
Grant Agreement No.: 101096342

Call: HORIZON-JU-SNS-2022

Topic: HORIZON-JU-SNS-2022-STREAM-B-01-04

Type of action: HORIZON-JU-RIA

D3.1 – HORSE Platform Intelligence
developed (IT-1)

Work package WP 3

Task Tasks 3.1, task 3.2, task 3.3, task 3.4 and task 3.5.

Due date 31/01/2024

Submission date 23/01/2024

Deliverable lead TID

Version 1.0

Authors Jose Manuel Manjón (TID), Juan Tamboleo (UMU), Fabrizio Granelli
(CNIT), Malak Qaisi (CNIT), Eva Rodríguez (UPC), Panagiotis Gkonis
(NKUA), Panagiotis Kapsalis (MAR), Vito Chiancini (MAR), Orazio
Toscano (ETI) and Stefanos Venios (SUITE5)

Reviewers Panagiotis Gkonis (NKUA) and Vito Cianchini (MAR)

Abstract
This deliverable presents the development of the modules, in terms of
software descriptions and technical details, of the Platform Intelligence.

Keywords Development, implementation, configuration, installation.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 2 of 77 © 2023-2025 HORSE

DOCUMENT REVISION HISTORY

Version Date Description of change List of contributor(s)

V 0.1 22/09/2023 Table of Contents Jose Manuel Manjón (TID)

V 0.2

03/11/2023 Introduction Jose Manuel Manjón (TID)

18/12/2023 Contribution to section 2.1 Jose Manuel Manjón (TID)

19/12/2023 Contribution to section 2.1 Juan Tamboleo (UMU)

20/12/2023 Contribution to section 4 Panagiotis Gkonis (NKUA)

21/12/2023 Contribution to section 2.2 Fabrizio Granelli and Malak Qaisi (CNIT)

21/12/2023 Contribution to section 5 Stefanos Venio (Suite5)

21/12/2023 Contribution to section 6 Orazio Toscano (ETI)

22/12/2023 Contribution to section 3 Eva Rodríguez (UPC)

V 0.3 10/01/2023 Modifications and comments Jose Manuel Manjón (TID)

V 0.4 17/01/2023 Modifications and comments All involved partners

V 0.5 18/01/2023 Comments from reviewers Panagiotis Gkonis (NKUA) and Vito Cianchini (MAR)

V 1.0 23/01/2023 Final reviewed version All involved partners

Disclaimer

Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the other granting
authorities. Neither the European Union nor the granting authority can be held responsible for
them.

Copyright notice

© 2023 - 2025 HORSE Consortium

Project co-funded by the European Commission in the Horizon Europe Programme

Nature of the deliverable: OTHER

Dissemination Level

PU Public, fully open, e.g. web X

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 3 of 77 © 2023-2025 HORSE

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)
DEM: Demonstrator, pilot, prototype, plan designs
DEC: Websites, patents filing, press & media actions, videos, etc.
DATA: Data sets, microdata, etc
DMP: Data management plan
ETHICS: Deliverables related to ethics issues.

SECURITY: Deliverables related to security issues
OTHER: Software, technical diagram, algorithms, models, etc.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 4 of 77 © 2023-2025 HORSE

Executive summary

This deliverable is focused on the development of the modules that are part of the Platform
Intelligence (PIL). These modules were described in Deliverable 2.2, where the functionalities
of each one of these modules was analysed in the context of the HORSE architecture.

These modules are: Sandboxing (SAN), where are located the Digital Twins (Prediction and
Prevention and Impact Analysis) ready to test some scenarios over them; Early Modelling
(EM), responsible of providing a preliminary assessment to the SAN by defining policies and
rules; Distributed and Trustable AI Engine (DTE), which defines AI data collection, ensuring
privacy and implementing productive measures; Policies and Data Governance (PAG),
handling the data stored related to the HORSE platform by applying data policies; and Threat
Detector and Mitigation Engine (DEME), developing algorithms focusing on network
parameters, protocols headers and relevant data for the threat detection and mitigation.

This document goes beyond the architecture of HORSE and details the process of deployment,
installation, software development or any other technical related work of the modules included
in the Platform Intelligence at IT-1. Therefore, further developments are expected to arise.

These developments and the ones coming from the AI Secure and Trustable Orchestration
(STO) module will serve to build a complete infrastructure ready to be integrated in the
following months of the project.

For this purpose of integration at this stage of the project Task Forces have been defined along
with specific use cases to make the integration process smoother and with the final goal of
having a final platform release with all components integrated.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 5 of 77 © 2023-2025 HORSE

Table of contents

List of figures.. 6

List of tables ... 8

Abbreviations ... 9

1 Introduction.. 12

2 Development of the Sandboxing ... 13

3 Development of the Early Modeling framework .. 22

4 Development of the Distributed Trustable AI Engine ... 31

5 Development of the Policies and Data Governance ... 38

6 Development of the Threat Detector and Mitigation Engine .. 51

7 Conclusions ... 61

References .. 62

Appendix A: Meaningful use cases ... 65

Appendix B. PAG Requirements .. 70

Appendix C. KPI related to the detector performances... 71

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 6 of 77 © 2023-2025 HORSE

List of figures

Figure 1. Topology created with EVE-NG... 16

Figure 2. The structure of the Prediction and Prevention Digital Twin (f rom HORSE D2.2). 19

Figure 3. A block diagram on the deployment of 5G in Comnetsemu ... 21

Figure 4. Early Modelling components. .. 22

Figure 5. Threat model. .. 23

Figure 6. Threat model XML schema. .. 27

Figure 7. ThreatActor element. .. 28

Figure 8. Vulnerability element. ... 27

Figure 9. OrganizationAsset element. .. 27

Figure 10. Threat element... 28

Figure 11. CyberAttack element. ... 28

Figure 12. ControlAction element. ... 29

Figure 13. DDoS DNS amplification attack XML sample. .. 30

Figure 14. The internal components of the DTE. .. 31

Figure 15. The FLOWER concept in DTE. ... 33

Figure 16. MLFO Architecture. .. 35

Figure 17. xAI example. .. 37

Figure 18. Create New Access Policy .. 39

Figure 19. Check Access Authorization ... 40

Figure 20. Read Policies List .. 40

Figure 21. List Authorization Objects ... 41

Figure 22. Store Anonymisation Conf ig & Perform Anonymisation ... 43

Figure 23. Retrieve Anonymisation Conf ig ... 44

Figure 24. Create New Retention Policy .. 45

Figure 25. Enable Retention Policy.. 46

Figure 26. Read Retention Policies List ... 46

Figure 27. MinIO Console ... 49

Figure 28. Create New Asset .. 49

Figure 29. Read Assets List .. 49

Figure 30. DEME sub-module in the overall architecture [28]. ... 51

Figure 31. HORSE Threat Detector Block Diagram .. 52

Figure 32. ML-based chained attack detector steps .. 53

Figure 33. STEP1 regressions .. 54

Figure 34. DEME micro-services ... 56

Figure 35. Ingress data format .. 57

Figure 36. HORSE Real -time attack detection web... 60

Figure 37. Ref lection Amplif ication Attack Scheme ... 66

Figure 38. SMF / UPF N4 ... 68

Figure 39. Session Deletion Attack.. 69

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 7 of 77 © 2023-2025 HORSE

Figure 40. Injection data into a TCP connection ... 69

Figure 41. Real case of an NTP amplif ication DDoS attack ... 73

Figure 42. Weighted linear combination of concurrent regressions [47]. ... 76

Figure 43. Waveforms .. 76

Figure 44. Standard regression detection time. .. 77

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 8 of 77 © 2023-2025 HORSE

List of tables

Table 1. Threat meta model elements.. 24

Table 2. DEME APIs. ... 33

Table 3. MLFO Comonents... 36

Table 4. Amplif ication factors .. 66

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 9 of 77 © 2023-2025 HORSE

Abbreviations

5GTN 5G Test Network

AI Artificial Intelligente

AMF Access and Mobility Management Function

API Application Programming Interface

CDN Content Delivery Network

DEME Threat Detection and Mitigation Engine

DDoS Distributed Denial of Service

DL Deep Learning

DN Data Network

DNS Domain Name Server

DT Digital Twins

DTE Distributable AI Engine

Dx.y Deliverable number y from Work Package x

EM Early Modelling

EVE-NG Emulated Virtual Environment for Network Graphing

gNB gNodeB

HTTP HyperText Transfer Protocol

I/O Input/Output

IBI Intent Based Interface

IP Internet Protocol

ISP Internet Service Provider

K8s Kubernetes

KNE Kubernetes Network Emulator

KSM Kube State Metrics

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 10 of 77 © 2023-2025 HORSE

ML Machine Learning

MLFO Machine Learning Function Orchestrator

NDT Network Digital Twin

NF Network Function

NFV Network Function Virtualization

NIDD Network Intrusion Detection Dataset

NTP Network Time Protocol

NWDAF 5G Network Data Analytics Function

RAN Radio Access Network

REST REpresentational State Transfer architectural style

OTEL Open TELemetry

PAG Policies and Data Governance

RAN Radio Access Network

RTR Reliability, Trust, and Resilience Provisioning

SAN Sandboxing

SDN Software Defined Network

SM Smart Monitoring

SMF Session Management Function

SVM Support Vector Machine

URL Uniform Resource Locator

UPF User Plane Function

VNF Virtualized Network Functions

VRNetLab Virtual Routers Network Laboratory

WP Work Package

xAI eXplainable AI

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 11 of 77 © 2023-2025 HORSE

XML eXtensible Markup Language

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 12 of 77 © 2023-2025 HORSE

1 Introduction

This deliverable introduces the work done in the first iteration of the Work Package 3
components, enclosed on the HORSE Platform Intelligence. As this deliverable is an OTHER
type, the information included here is mostly related with software developments of the different
modules at this stage of the project.

The document is divided into five main sections, related with the five tasks of this Work
Package:

• Section 2: Sandboxing, linked to task 3.1.
• Section 3: Early Modelling framework, linked to task 3.2.

• Section 4: Distributed Trustable AI Engine, linked to task 3.3.

• Section 5: Policies and Data Governance, linked to task 3.4.

• Section 6: Threat Detector and Mitigation Engine, linked to task 3.5.

Section 2 describes the developments made on the Sandbox (SAN), which includes two
submodules based on Digital Twins (DT): the Prediction and Prevention DT and the Impact
Analysis DT. Those Digital Twins will work together to build a suitable Sandbox to predict and
test the modules and topologies of the project.

Section 3 is related to the Early Modelling (EM) component, which is the module in charge of
providing the information to the Sandbox. The Early Modelling module includes two blocks: the
Taxonomy, which characterize and profile the different components; and the Attributes, which
define the strategy used to characterize the modules based on the attributes considered.

Section 4 describes the Distributable AI Engine (DTE), module that collects data from various
sources and employs AI and machine learning modules to define optimal security policies while
preserving privacy. Also, the DTE module takes on data management responsibilities,
including pre-training data processing.

Section 5 analyses the Policies and Data Governance (PAG) module serves as the
comprehensive hub for ensuring data quality, privacy, integrity, and user-friendly access. It
facilitates the flow of data while upholding essential legal and ethical data management
principles.

Finally, section 6 provides the development of the Threat Detection and Mitigation Engine
(DEME) module, which handles the intricate analysis and processing of network data streams
in highly complex and distributed network and infrastructure environments. The algorithms
developed will offer an in-depth examination of network parameters, protocol headers, and the
extensive data collected from network equipment, devices, and Virtual Network Functions
(VNFs).

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 13 of 77 © 2023-2025 HORSE

2 Development of the Sandboxing

The Sandboxing component (SAN) of the HORSE architecture will be used to perform
predictions, analyse prevention strategies, and perform impact analysis of different intents and
scenarios.

The availability of such a Sandboxing module will allow the HORSE architecture to perform
experiments of the Digital Twin of the 6G network, continuously synchronized with the Physical
infrastructure of the 6G network and its services. Those experiments are related with
cybersecurity threats, like DDoS attack or API vulnerabilities. For more information, check
Appendix A.

The first release of the component will focus on how to implement the Digital Twins and how
to enable the HORSE architecture to interact with them. For this purpose, both Digital Twins
detailed in this section will provide REST APIs and use YAML/XML files for their configuration
and information exchange.

Synchronization between the Physical 6G networking architecture and the Digital Twin will be
at this stage performed through a configuration file.

2.1 Impact Analysis Digital Twin

The Impact Analysis Digital Twin is responsible for emulating a real network ready to deploy
and test the necessary attacks and provide some outputs that can help to take the
corresponding decisions on the real network.

2.1.1 Tools

To build the Impact Analysis Digital Twin, a variety of tools will be used in the project which
are detailed on the following sections.

Kubernetes

Kubernetes [1] is a powerful open-source container orchestration platform designed to
automate the deployment, scaling, and management of containerized applications. It leverages
container technology (commonly Docker) to encapsulate applications and their dependencies
into isolated units. Containers enable consistent deployment and execution across different
computing environments. Regarding the orchestration, Kubernetes simplifies the management
of containerized applications by automating tasks such as deployment, scaling, and load
balancing. It abstracts the underlying infrastructure, making it easier to deploy and scale
applications consistently across various environments.

Kubernetes Network Emulator

The Impact Analysis Digital Twin is based on KNE: Kubernetes Network Emulator. KNE [2] is
an Open-Source tool by OpenConfig that allows the deployment of network topologies on
Kubernetes pods. For this, KNE emulates images of existing routers, as Cisco, Arista, etcetera.

VR Network Lab

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 14 of 77 © 2023-2025 HORSE

VRNetLab [3] is an open-source project that provides a platform for running and testing virtual
routers in a virtualized environment. VRNetLab leverages Docker containers for the
deployment of virtual routers by providing a lightweight and efficient way to create, deploy, and
manage virtualized applications, including networking devices.

Emulated Virtual Environment for Network Graphing

EVE-NG [4] is a network emulation software that provides a platform for designing, testing,
and training network scenarios. The tool enables the emulation of complex network topologies
in a virtual environment. Users can design and test network configurations without the need
for physical hardware. It supports a variety of networking vendors, including Cisco, Arista, and
others. This allows users to emulate devices from different manufacturers in the same
topology.

Security Orchestration

BASTIÓN is a policy-based security orchestrator that allows orchestrating and enforcing
security policies, considering multiple orchestration algorithms in both, proactive and reactive
ways. Security orchestration policies can model different security requirements with different
levels of abstraction. Thus, policy models are refined/translated during the orchestration
process depending on the abstraction level received. To this aim, the orchestrator implements
plugins and drivers that handle policies translation and enforcement. On the one hand, a plugin
is a software component that implements the logic for translating security policies to specific
technologies. For instance, a plugin could translate security policies derived from what-if
scenarios into specific configurations/actions to be applied in the DT (K8s, KNE). On the other
hand, a driver is a software component that implements the logic for enforcing
configuration/actions across different kind of technologies. For instance, enforcing specific
configurations/actions in the DT such as deploying, configuring, and executing a specific attack
(e.g., DDoS from Pods) as well as enforcing specific countermeasures using concrete
available technologies (e.g., Filter traffic in specific routers).

Finally, the orchestrator is composed of different modules:

• Orchestration Service: This module provides the entry point for orchestrating and
enforcing security policies. Specifically, it implements different classes that have REST
API endpoints that allow enforcing different kinds of security policies. This component is
crucial in the NDT context since it makes sure that the security policies needed to analyse
different what-if scenarios are applied.

• Allocation Manager: It implements the calculation of the orchestration and enforcement
plans according to the selected allocation type and allocation algorithms. This selection is
performed as the first step according to the available features. For instance, if the
infrastructure is NFV-enabled, an NFV-enabled allocation type can be selected.
Otherwise, conf-only allocation will be selected. Besides, each allocation type considers
several allocation algorithms.

• Policies Manager: This module implements different managers that allow managing
different policy models. This component will be very useful because it will help to digest
the different types of policies that will be received. Since this module will receive
information from a variety of components, including Early Modelling, Pre-processing, and
Intent-based interface, managing these different inputs will facilitate the deployment of the
NDT. Plugins are also part of this module.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 15 of 77 © 2023-2025 HORSE

• NFV-MANOs manager: It implements common methods and functions that allow requests
for NFV operations independently of the underlying (and available) NFV-MANOs. For
instance, operations like deploy, configure, and remove.

• Assets/Enablers Manager: It implements a set of drivers that allow the Security
Orchestrator to configure Assets/Enablers (using the results of the policy translation).

• Data Service Manager: It implements a data services client that allows access to data
services in a common way. The specific data service driver is provided by auto-generated
code using OpenAPI tools.

• Enforcement Manager: It implements the way that the enforcement plan is applied.
Different enforcement managers can be developed by including an “enforce” method.

Telemetry

In order to make an assessment of the security policies applied to the infrastructure, gathering
and analysing telemetry data is needed. Telemetry data will be composed of metrics of the
network, logs from its components, and traces from the different applications. A variety of tools
have been considered in order to fulfil this process:

• Prometheus [5] is an open-source system monitoring and alerting toolkit. It is mainly used
for gathering metrics and events for different networking systems. Thanks to Prometheus,
the process of data analysis and the understanding of the performance of the system is
facilitated. Prometheus is also known for its scalability and flexibility since it has good
integration with containers and cloud services. It will be used to store metrics and will be
integrated with the Alertmanager to alert, and it will notify administrators in case of the
detection of abnormal values.

• OTEL (OpenTelemetry) [6] is an observability framework and toolkit designed to create
and manage telemetry data such as traces, metrics, and logs. OpenTelemetry is vendor-
and tool-agnostic, meaning that it can be used with a broad variety of observability
backends. It is the unification of two other projects that provide knowledge and expertise
in this field. OpenTelemetry will help to comply with industry standards as well as make a
cleaner monitoring pipeline.

• Node Exporter [7] is a component of the Prometheus ecosystem. It is a metric gatherer for
Unix systems and is designed to get information about the hardware and the operating
system. Node Exporter can gather a variety of metrics, like the use of CPU, memory,
network, storage, etc. In addition, Node Exporter has great integration with Prometheus.
Using Node Exporter, the assessment required for the what-if scenarios will be done by
measuring the different metrics for the hardware and the operating system.

• KSM (kube-state-metrics) [8]: this tool helps to get information about the state of the
Kubernetes cluster. This component does that using the Kubernetes API and has good
integration with the rest of the components since it can send the metrics in a Prometheus
format. KSM helps with the monitoring of Kubernetes clusters and gathers information
regarding health and performance. The same way Node Exporter will be used for the
assessment, KSM will help with information about the cluster.

• Alertmanager [9] is another component of the Prometheus ecosystem and takes care of
managing alerts generated from Prometheus and sending notifications based on
predefined rules.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 16 of 77 © 2023-2025 HORSE

2.1.2 Deployment

Once the topology is created in the EVE-NG, it is adapted to a format readable by KNE by
executing a script that translate the information to one format to another. An example of a
topology generated in EVE-NG is described in Figure 1.

Figure 1. Topology created with EVE-NG.

And the corresponding topology descriptor transformed, that is consumed by KNE to deploy
the nodes with its correspondent links:

name: horse-example

nodes:

- name: ceos1

 model: ceos

 os: eos

 vendor: ARISTA

 config:

 config_path: /mnt/flash

 config_file: startup-config

 file: r1-config

 interfaces:

 eth1:

 name: Ethernet1

 eth2:

 name: Ethernet2

 eth3:

 name: Ethernet3

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 17 of 77 © 2023-2025 HORSE

- name: ceos2

 model: ceos

 os: eos

 vendor: ARISTA

 config:

 config_path: /mnt/flash

 config_file: startup-config

 file: r2-config

 interfaces:

 eth1:

 name: Ethernet1

 eth2:

 name: Ethernet2

- name: server

 vendor: HOST

 config:

 config_path: /home/cognet

 config_file: server-config.py

 file: /configuracion/server-config.py

 image: alpine:latest

 interfaces:

 eth1:

 name: Ethernet1

- name: client-1

 vendor: HOST

 config:

 config_path: /home/cognet

 config_file: client-1-config.py

 file: /configuracion/client-1-config.py

 image: alpine:latest

 interfaces:

 eth1:

 name: Ethernet1

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 18 of 77 © 2023-2025 HORSE

- name: client-2

 vendor: HOST

 config:

 config_path: /home/cognet

 config_file: client-2-config.py

 file: /configuracion/client-2-config.py

 image: alpine:latest

 interfaces:

 eth1:

 name: Ethernet1

links:

- a_node: ceos2

 a_int: eth1

 z_node: ceos1

 z_int: eth3

- a_node: server

 a_int: eth1

 z_node: ceos2

 z_int: eth2

- a_node: client-1

 a_int: eth1

 z_node: ceos1

 z_int: eth1

- a_node: client-2

 a_int: eth1

 z_node: ceos1

 z_int: eth2

With this configuration file, it is feasible to deploy the scenario over the KNE by executing some
commands. Once the pods have been created, we have to set on them the network
configuration with the IP addresses, routes, etc.

On a first deployment of the Impact Analysis Digital Twin, there will be 10 clients, a gNodeB a
transport network made up of four routers, a 5G core and a DNS server. All these elements
will be needed to emulate some attacks over it.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 19 of 77 © 2023-2025 HORSE

2.2 Prediction and Prevention Digital Twin

The Prediction and Prevention Digital Twin is built on the Comnetsemu network emulation
software [10], [11]. Comnetsemu is based on the well-known mininet network emulator [12],
with the integration of a docker-in-docker environment to enable the deployment of services
as docker containers. In this way, it is possible to emulate a 5G SA or NSA architecture by
exploiting the available open-source implementations of the 5G core and access networks.

All employed software, including Comnetsemu, is publicly available and open source.

Mininet is a well-recognized Software Defined Networking network emulator. It is characterized
by a stable and realistic performance, as demonstrated in [13], as well as some limitations in
extremely large emulation scenarios [14]. Comnetsemu builds up on top of such realistic
network emulation to enable to deploy actual service containers, thus generating a realistic
workload and enabling to build realistic scenarios for current and next-generation networks.

Prediction and Prevention Digital Twin includes the following modules:

• Digital Twin Modelling module: it is responsible for generating the DT based on the input
data (traffic and topology information, orchestrated services, etc.)

• Digital Twin Engine module: it will run the DT in the Comnetsemu emulation environment.

• Digital Twin-based Prediction module: it will analyze the output of the DT Engine block
using AI/ML algorithms to perform predictions and identify anomalies.

• I/O Interface module: interface with DTE / IBI for receiving requests and providing the
related outcomes.

Figure 2. The structure of the Prediction and Prevention Digital Twin (from HORSE D2.2).

The Prediction and Prevention Digital Twin is available to the HORSE platform as a Virtual
Machine. Deployment of the VM is performed through Vagrant.

All modules are developed in Python. The following sections describe how the internal modules
are developed.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 20 of 77 © 2023-2025 HORSE

Digital Twin Modelling module

This module generates the script for replicating the Physical Twin of the 6G network into the
Digital Twin.

This module receives in input via REST APIs a YAML descriptor of the network topology and
the known services running in the network. The format for data collection is common for the
entire HORSE sandbox, and it is the same as for the Impact Analysis Digital Twin. An example
of the format of the file is as described in Section 2.1.2. Based on such information, it generates
a script file to build the network and services in the Comnetsemu environment and to run the
Digital Twin in the sandbox.

The following represents an example of a script for deploying a simple topology in mininet or
Comnetsemu:

from mininet.topo import Topo

class MyFirstTopo(Topo):

 "Simple topology example."

 def __init__(self):

 "Create custom topo."

 # Initialize topology

 Topo.__init__(self)

 # Add hosts and switches

 h1 = self.addHost('h1')

 h2 = self.addHost('h2')

 h3 = self.addHost('h3')

 h4 = self.addHost('h4')

 leftSwitch = self.addSwitch('s1')

 rightSwitch = self.addSwitch('s2')

 # Add links

 self.addLink(h1, leftSwitch)

 self.addLink(h2, leftSwitch)

 self.addLink(leftSwitch, rightSwitch)

 self.addLink(rightSwitch, h3)

 self.addLink(rightSwitch, h4)

topos = { 'myfirsttopo': (lambda: MyFirstTopo()) }

The module receives in input via REST APIs also a YAML/XML descriptor of the attack or
scenario to evaluate. This will be translated in a set of commands to deploy additional
components in the Digital Twin and run/replicate network traffic.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 21 of 77 © 2023-2025 HORSE

Digital Twin Engine module

This module implements the Digital Twin. The Digital Twin is built in the Comnetsemu
environment, enabling a precise emulation of an SDN network and faithful replication of
services by deploying them in docker containers.

As an example, the following figure represents how a simple 5G network with Mobile Edge
technology can be replicated in form of a Digital Twin in Comnetsemu.

Figure 3. A block diagram on the deployment of 5G in Comnetsemu

Digital Twin-based Prediction module

This module is aimed at predicting relevant scenarios in order to signal potential treats or other
performance degradations to the HORSE architecture. In the first implementation, it will be
able to detect traffic peaks and potential congestion as well as some types of security attacks.

I/O Interface module

The Digital Twin offers a REST API for interaction with the other modules of the HORSE
architecture, as well as for most of the interactions among its internal modules. A Swagger
interface is provided to enable fast and efficient testing of the proper operation of all offered
functionalities.

The REST APIs are developed using Python FastAPI framework. The exposed ports will be
configurable through a proper “config.ini” file in the software distribution.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 22 of 77 © 2023-2025 HORSE

3 Development of the Early Modeling framework

The early modelling is designed to feed the Sandboxing module with all the required
information to successfully perform. It consists of two main components: Taxonomy and
Attributes. Taxonomy is responsible for characterizing and profiling the different threats and
attacks to be considered in the 6G context within the DT. Attributes define the strategy and set
of attributes to characterize the impact of the attack in the 6G components, as well as the
impact of the mitigation and preventive strategies in the 6G components. Figure 1 shows the
structure of the Early Modelling module.

Figure 4. Early Modelling components.

3.1 Taxonomy component

The main objective of the taxonomy component is to define a model for characterizing and
profiling the different threats and attacks to be considered in the 6G context within the DT.

In the threat modelling process, the first step is to identify the vulnerabilities in the system/
network/application to exploit the resources and disrupt the services. Figure 5 presents the
proposed meta-model consisting of all the aforementioned elements.

Attacks can be characterized by the meta-model consisting of the following elements.

• Threat actor

• Vulnerability

• Threat

• Cyber Attack

• Control action

• Information on organization Assets

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 23 of 77 © 2023-2025 HORSE

Figure 5. Threat model.

Vulnerability: Vulnerability defines the loophole in a system or vulnerable spot that can be

targeted by the adversary. The meta-model makes use of an attack surface to clearly describe

the vulnerability. This attack surface includes information on user equipment, network

information, and services that can be targeted. While defining the vulnerability in an

application/network/user process, there is a need to mention the other properties associated

with vulnerabilities such as source, destination, and timestamp.

Organization Assets: Organization assets include the information of assets and other devices
that threat actors want to exploit. The proposed threat modelling processes consider the
criticality of each asset on a Likert scale. This would help us in defining and scaling the critical
assets and devices for the organization.

Threat Actor: A threat Actor is categorized as a malicious actor who has some motivation
towards using a system. Including the intention of the threat actor as he wants to steal some
information or want to disturb the services or applications provided by the network. The
proposed meta model defines the scope of adversary groups for threat actors by categorizing
it as internal or external to the system and skill set on a Likert scale.

TTP: TTP is used by the attacker to obtain its operation by including the tactics, techniques,
and procedures. TTP can be useful for gathering the cyber threat information related to attack
pattern, deployed resources and exploit information.

• Tactics: it defines the goal of the attacker.

• Technique: it includes the software tools and techniques that can be used by the attacker
to perform attack.

• Procedure: It includes the set of tactics and techniques to put together to make the
procedure. Basically, it includes the step-by-step procedure on how to launch the attack.

Threat: Threats include harmful action facilitated by vulnerability. It can be any weakness from
the ENISA threat report, use case activities, adversarial behaviour, and observable patterns.

Cyber Attack: it is a harmful action conducted by the threat actor by exploiting the vulnerability
of the system. The following attributes are associated with the cyber-attack.

• The pattern of the attack: it can be malware, spyware, or injection.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 24 of 77 © 2023-2025 HORSE

• Pre-requisite: information available on vulnerability.

• Attack vector: include the whole mechanism to deploy the attack.

Control Action: Control action includes the course of action and countermeasures associated
with an attack. This includes preventive measures, mitigation, and corrective measures.

• Preventive measure: policies implemented on the occurrence of a particular event (risk)
probability, that are intended to prevent the appropriate actions violating the policies or
link with the violation or risk associated with the third party.

• Mitigation: Define the mitigation action post-attack occurrence

• Corrective: Define the course of action and risk management related to 6G technology,
designed to react to the detection of an incident to reduce or eliminate the opportunity for
the unwanted event to recur

Table 1 presents describes all the elements in the meta model, as well as its type and scope
in the HORSE architecture.

Table 1. Threat meta model elements.

Elements Attributes Description Type Sources from
where

Organization
Assets Id (attribute) Unique Identif ier String

SM, Pre-
processing,

PAG

 Type Identif ier of organization Assets String

 Criticality

Desired level of security for use
case, based on a Likert scale, 5

levels.
Integer

Threat Actor ID Unique Identif ier String

MITRE and 5G

Telco network

 Adversary
Group

Def ine the adversary group

(internal/External) String

 Skill

The specif ied level of skill, based
on a Likert scale, 5 levels

(Knowledgeable-no-knowledge)
Integer

 Technique

Techniques used by the threat

actor (e.g. Network Scanning

Technique)
String

 Required

Resources

Used of s/w to Identify which
service is vulnerable and can be

targeted
String

 Motivation
Def ine the motivation of the

threatActor using a system String

 Intension What threat actor wants to steal String

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 25 of 77 © 2023-2025 HORSE

 Campaign

Need to def ine the threat actor
based on the capability, such as

their intent, type of password
 used, observed patterns,

behaviour, history, and motives

String

TTP Tactics
Def ine the goal of the attacker

(e.g. tactics can be impact) String

MITRE, 5G

Telco network
and

DEME

 Technique
What tool or technique was used

by the attacker (e.g. IP spoof ing) String

 Procedure
Def ine step-by-step procedure

on how to launch the attack String

Cyber Attack Type

Def ine type of attack that could
be launched in Horse (e.g. DNS

amplif ication)
String

SAN, DEME

 Pattern

Def ine behaviour or pattern of
attack such as Spyware,

malware, injection
String

 Pre-requisite

Connect or reference the

Information available on

vulnerability
String

 Vector
Threat vectors def ine the whole

Mechanism to deploy the attack String

 ATT&CK
Describe the ID and type

available on MITRE String MITRE

Threat ID Identif ier of link String

Use-cases

 Name
Def ine a threat which is

facilitated by vulnerability String

 Pattern

To identify weaknesses patterns

can be (1: State of the art, 2:
ENISA report, 3: Adversary

Behaviour, 4: use-case threat

activities, 5: specif ic observable

pattern)

String

Vulnerability
Attack

Surface (User
Equipment)

Def ine the User equipment (e.g.
Malicious Bot (CCTV, HoLoLens

headset etc.))
String

SM

Attack

Surface

(Network)

Def ine Network (e.g. RAN, CN
(core network), EN (Edge

network)
String

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 26 of 77 © 2023-2025 HORSE

Attack

Surface
(Services)

Def ine 5G/6G Services (e.g.
Cloud, Roaming, third party,

third-party)
String

 Source

Def ine the sources of
vulnerability (S/W, network,

website, user process,
application, conf iguration, or

third-party vendor)

String

 Destination Target of vulnerability String

 Timestamp date time

Estimated

Impact
Performance

Parameter
Def ine the performance

parameter.
String

SAN

 System
services

Def ine 5G/6G services (e.g.

Roaming, Multi-media, cloud ,
third party)

String

 System
Components

Def ine 5G/6G Components (e.g.
RAN core convergence, Core-
network, edge network, user,

terminals etc.

String

Real Impact
Attack

Propagation

Def ine the attack propagation

and cascading ef fect link with
threat actor penetration,

manipulation and severity of an

attack

XML

element

Control Action Preventive

Def ine policies implemented on

the occurrence of a particular
event (risk) probability, that are

intended to prevent the

appropriate actions violating the
policies or link with the violation
or risk associated with the third

party.

XML

element

PAG, RTR

 Mitigation
Def ine the mitigation action post

attack occurrence
XML

element

 Corrective

Def ine the course of action and

risk management related to 6G
technology, designed to react to

the detection of an incident to

reduce or eliminate the
opportunity for the unwanted

event to recur.

XML
element

3.2 Threat meta model XML Schema

An XML schema has been defined for the meta-model to enable the representation of threats.

This XML schema consists of the root element threatModel, which consists of a sequence of

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 27 of 77 © 2023-2025 HORSE

intermediate elements threatModelElement. The threatModelElement has an ID to uniquely

define each model element and a sequence consisting of all the elements in the Meta model,

as shown in Figure 6.

Figure 6. Threat model XML schema.

Figures 7 to 12 show the XML representation for all the elements in the threat meta model.

Figure 8. Vulnerability element.

Figure 9. OrganizationAsset element.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 28 of 77 © 2023-2025 HORSE

Figure 7. ThreatActor element.

Figure 10. Threat element.

Figure 11. CyberAttack element.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 29 of 77 © 2023-2025 HORSE

Figure 12. ControlAction element.

3.2.1 DDoS DNS amplification

To see how our model fits a specific attack, we are taking one such type of DDOS attack
named as DNS amplification attack presented below. In our XML schema, the CyberAttack
element contains all the attributes of the cyber-attack as mentioned above along with two child
elements as “Estimated Impact of attack” and “real impact of attack”.

DNS amplification attacks can be triggered in two ways; i) DNS server and ii) NTP (network
time protocol). In the example presented below, we are considering the case in which a DNS
server overwhelms the resources for a single generated query. To launch this type of attack,
the attacker makes use of botnets using spoofed IP addresses. As in Figure 8, we can see
one attribute named “ATT & CK”.

By using the attributes of CyberAttack, we can map this information with adversarial tactics,
techniques, and common knowledge. For this purpose, we only need to add the ID and type
details to connect it with MITRE. We can add the MITRE information here as ID=” T1498.002”
and type “Network Denial of Service: Reflection Amplification” respectively.

Mitigation and Preventive Strategy

To take preventive and mitigation measures, we have defined the “ControlAction” element. It
includes information on proactive and preventive action when facing a threat. To take the
appropriate action we need to provide the type and condition of action that could be used as a
measure against the threat. In the example mentioned below (Figure 10), we are considering
the DNS reflection-amplification attack on a 5G network. For the specific attack, the type and
ID mentioned on MITRE is mapped with the schema element.

Mitigation against DNS reflection- amplification attack

Mitigation information can be mapped with the control action element which intercept the
incoming network upstream to filter out the legitimate traffic from the attack traffic by utilizing
the information of action and condition available. The defence against this attack can be offered
by ISP (internet service provider), 3rd parties like CDN (content delivery network), or
companies having specialization in the mitigation of DDoS attacks. Depending on the volume
of the flood we can make use of “filtering by blocking the source addresses” sourcing the

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 30 of 77 © 2023-2025 HORSE

attack, blocking the ports that are being targeted, and blocking the protocol being used for
transport.

Figure 13. DDoS DNS amplification attack XML sample.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 31 of 77 © 2023-2025 HORSE

4 Development of the Distributed Trustable AI Engine

4.1 Introduction

The distributed trustable AI Engine (DTE) module is responsible for the collection of various
data from diverse sources of the HORSE infrastructure and the employment of AI/ML modules
in order to define the optimum set of policies to ensure a high level of security against a wide
range of attacks and impose privacy rules. DTE provides a programming interface to serve AI
models and predictions to other modules, thus supporting distributed trustable AI-assisted
cybersecurity tools. Moreover, DTE performs data management prior to the actual training, by
employing the appropriate policies for anomaly detection (tampered data), as well as data
anonymisation. In addition, DTE guarantees compliance of the proposed solutions with the
policies module.

Regarding its interaction with other HORSE modules, the DTE receives inputs from the
detection and mitigation engine (DEME) in the form of advices, for different types of attacks in
the network. In this context, and for predefined known attacks, the information that is forwarded
to the DTE includes the id of the HORSE node under attack, and the identified attack type or
combination of attack types with a predefined confidence percentage. The advices from the
DEME are sent using REST HTTP requests to the DTE. In the same context, DTE can also
receive data in the form of policies from PAG, via REST APIs.

In the next step, mitigation measures and methodologies from well-established knowledge
bases, such as the MITRE ATT&CK are exploited from both the DEME and DTE in order to
build the appropriate mitigation intents. Towards, this end, the output of the DTE is send via
REST API to the IBI. It should be noted at this point that the communication among all internal
APIs will be based on the JSON format. Moreover, a GUI will be made available for the dynamic
retraining of modules if necessary, according to the results of the ML model evaluator that will
be described below.

4.2 Internal modules of the DTE

The internal parts of the DTE can be shown in the Figure below and include the NWDAF
aggregator, the data processing module, the ML model training, the ML model evaluator, the
ML model repository, as well as the intent creator.

Figure 14. The internal components of the DTE.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 32 of 77 © 2023-2025 HORSE

If multiple NWDAF instances are deployed, as in the case of HORSE where different instances
correspond to different network areas, an NWDAF can act as an aggregation point (i.e.
Aggregator NWDAF) and collect analytics information from other NWDAFs, which may have
different Serving Areas, to produce the aggregated analytics [15].

The data processing module receives direct inputs from the DEME in the form of node ID,
attack type (or combination of attack types) per node, confidence interval, proposed mitigation
action and transforms them to a format that can be accessible by the ML training modules.

The ML training is the main module of the DTE where various models are trained for different
types of attacks. These will include supervised, unsupervised, and deep reinforcement learning
approaches [16]. For this purpose, various datasets will be exploited, representing diverse
attacks and network topologies. These datasets are provided i) from HORSE partners, ii) from
the NKUA Open5GS and UERANSIM-based testbed, being able to replicate 5G core network
attacks, as well as attacks on the 5G RAN, and iii) open datasets that have been used from
relevant works on 5G attack scenarios.

At this stage, four different datasets from the literature have been analysed together with ML
model training and evaluation:

• The first one is a synthetic 5G cellular network data for NWDAF [17], that is based on
Open5GS and UERANSIM. In this context, a topology with a fixed number of subscribers
and cells with different traffic patterns and anomalies has been considered, where the
anomaly is defined as an unexpectedly high network traffic compared to the average
network traffic, fading and stabilizing in time.

• The second dataset is the 5GAD-2022 5G attack detection dataset [18], that is based on
Free5GC and UERANSIM. In this case, two types of intercepted network packets are
included: "normal" network traffic packets and "attack" packets from attacks against a 5G
Core implemented with free5GC. The captures were collected using Tshark or Wireshark
on 4 network interfaces (N2, N3, N4, N6) (AMF, gNB, UPF, SMF, DN) within the 5G core.
10 attacks were implemented, mainly relying on REST API calls to different parts of the
core.

• The third dataset [19] was generated on an Open5GS and UERANSIM-based testbed.
Here, an SMF instance networked in parallel to the original network function acts as the
attacker’s entry point to the virtualised infrastructure and targets the N4 interface between
the SMF and the UPF. The hijacked SMF executes the cyberattacks against the UPF. In
order to obtain this data set, the network traffic data of each entity/device was captured
through Tshark for each network function and radio element.

• The fourth data set, titled 5G Network Intrusion Detection Dataset (NIDD) [20] contains
data in both packet-based format as well as in flow-based formats. 5G-NIDD is generated
using the 5G Test Network (5GTN) in Oulu, Finland, thus providing a close resemblance
to a real network scenario. 5G-NIDD presents a combination of attack traffic and benign
traffic under different attack scenarios, falling into the Distributed Denial of Service (DDoS)
and Port Scan/Reconnaissance categories.

For these datasets, various ML models have been evaluated by the ML model evaluator
module for predefined ML metrics, such as accuracy and F1-score. It should be noted that
apart from evaluating the anomaly detection performance of different ML models, e.g. support
vector machine (SVM) with binary kernel for the N4 interface attacks, these attacks have
already been replicated at the NKUA testbed and data are collected, as well as logs from
various NFs, i.e. AMF, SMF and UPF. After the initial ML model evaluation phase is over, two
distinct actions can take place: i) retraining of the ML model in case its performance is below
the desired level, or ii) storage of the model in the ML repository, for retrieval in future potential
attacks.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 33 of 77 © 2023-2025 HORSE

Figure 15. The FLOWER concept in DTE.

4.3 Future extensions

In the next release of the DTE, federated learning (FL) will be also applied, where each
NWDAF instance will be responsible for data collection and aggregation in a distinct set of
mobile nodes, as shown in the Figure above. In this case, there are multiple DTE instances
per subgroup of nodes, where each one trains locally the corresponding models with the
available datasets. Afterwards, the master DTE model with the NWDAF aggregator is
responsible for updating the global parameters and informing the individual nodes for their
updated values. For this purpose, the FLOWER concept will be applied, that can train multiple
nodes in an FL fashion [21].

4.4 APIs

Table 2. DEME APIs.

Nº API Comments Inputs Outputs

1
[action,data] =

getRealContext()

This API retrieves data directly
from the threat detector and

mitigation engine (DEME)

-

This API has two
outputs: data

coming directly
from the DEME that

can be in the form
of time series and

the appropriate
action as it has

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 34 of 77 © 2023-2025 HORSE

been defined by the
DEME

2
[action,data] =
getEmulatedCont
ext()

Same as before but now data
are fed directly from the
emulated context

-

Same as the
previous API
regarding real
context.

3
policy =
getpolicy()

This API retrieves the set of
policies in HORSE directly from
the policies and data
governance (PAG)

-

The set of policies
of HORSE that are
fed to the DTE to
ensure compliance
during ML model
training

4
pr_data=data_pr

ocess(data)

API that is used for proper
data manipulation that are
received from real or emulated
context

This processing might include
proper format transformation,

missing values replacement,
data normalization, etc. The
output is a similar data matrix
as the input one, where the
processed values are stored.

Data from
real or

emulated
context

Processed data

ready for ML
training

5

model_predictor

=
train_model(pr_

data,train_meth
od)

This API is used to train the
DTE models based on the
ingested data after the

data_process API output.
It typically accepts a dataset or

data parameters required for
model training.

The API triggers the training
process and updates the DTE
models accordingly.

The
processed

data
along

with the

desired
training
method

The output
model_predictor is

the trained model
that can be either in

the form of a
function or a

structure.

6

ML_KPIs =
evaluate_model(

model_predictor,
test_data

This API is used to evaluate the
performance of the trained

models.
It accepts a dataset or data

samples and returns the
evaluation results, such as

precision, recall, F1-score,
mean square error (MSE) or
other relevant metrics,
indicating how well the models
are performing. Typically,
test_data can be a subset of

Test data

along
with

model
predictor

A list of KPIs in the

form of a table to
evaluate the

accuracy of the
trained model

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 35 of 77 © 2023-2025 HORSE

the pr_data that can be used
for evaluation purposes.

7

intent =

generate_intent(
data)

This API generates an intent to
be passed to the Intent-Based
Interface (IBI)

An intent in the

form of an action

4.5 Machine Learning Function Orchestrator (MLFO)

The Machine Learning Function Orchestrator (MLFO) is a framework comprising various
components designed to provide advanced functionalities for training machine learning
models. Leveraging state-of-the-art libraries such as scikit-learn, Keras, and TensorFlow,
MLFO facilitates the training and retraining of models. The orchestrated workflows trigger the
execution of both Machine Learning (ML) and Deep Learning (DL) experiments, harnessing
the power of cloud-native infrastructure. MLFO integrates three key components to ensure
seamless functionality:

• Data Science Platform Component: This element of MLFO is dedicated to supporting
the data science process, offering a robust environment for data exploration, feature
engineering, and model development. It provides a user-friendly interface and tools that
streamline the data science workflow.

• Workflow Orchestrator: At the core of MLFO, the Workflow Orchestrator coordinates
and manages the entire machine learning pipeline. It oversees the training and retraining
processes, ensuring efficient communication between different stages of model
development. This component plays a crucial role in optimizing the orchestration of tasks
to enhance overall system performance.

• Models Registry: MLFO incorporates a Models Registry that serves as a centralized
repository for storing and versioning training artifacts. This includes metrics and models
generated during the training process. The Registry ensures traceability and
reproducibility by maintaining a comprehensive record of model versions and associated
performance metrics.

Figure 16. MLFO Architecture.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 36 of 77 © 2023-2025 HORSE

Table 3 below depicts the list of components comprising MLFO, providing their name, short
description and key technologies used in their technical implementation.

Table 3. MLFO Comonents.

Component Name Short Description Technologies

Data Science Platform
Scientific Environment for
training ML / DL experiments

scikit-learn, keras,
Tensorflow, pandas, numpy,
matplotlib, seaborn, SHAP,
docker, K8S, Jupyter

Workflow Orchestrator
Orchestrate the execution of
ML / DL experiments as K8S
objects

Prefect, MinIO, Postgress,
docker, K8S

Model Registry
Provide storage
functionalities for training
models and artifacts

MLFlow, Postgress, MinIO

4.6 Explainability of ML / DL Experiments

The Distributed Trustable Engine goes beyond model training by incorporating the crucial
element of explainability for Machine Learning (ML) and Deep Learning (DL) experiments.
Post-training, the Machine Learning Function Orchestrator (MLFO) utilises training artifacts to
execute explainability methods, providing insights into the inner workings of models. This
process is essential for assessing the performance and trustworthiness of models within the
target cloud-native environment. MLFO, equipped with the installed and configured SHAP
library, is poised to deliver robust explainability capabilities. Furthermore, it is designed to be
adaptable, allowing seamless extension to support other eXplainable AI (xAI) libraries such as
LIME, omniXAI, and ELi5. This flexibility ensures that MLFO remains at the forefront of
explainability methodologies, accommodating diverse and evolving approaches to interpreting
and understanding machine learning models.

In the case of the 5GNID dataset [22] employed for training machine learning (ML) and deep
learning (DL) models aimed at discerning between normal and abnormal packets, with a
specific focus on identifying the nature of abnormalities such as various types of cyber-attacks,
the assessment of explainability plays a pivotal role in evaluating experimental outcomes. This
involves elucidating how input features influence the classification output. To illustrate this
concept, consider the diagram below, which delineates the impact of the "Attack Tool" feature
on the ultimate classification decision output. This visual representation serves as a succinct
depiction of how this particular input feature contributes to the determination of whether a
packet is associated with a normal pattern or indicative of a specific type of attack.
Understanding such contributions is essential for enhancing the transparency and
interpretability of the model's decision-making process, ultimately fostering a more
comprehensive comprehension of its performance characteristics.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 37 of 77 © 2023-2025 HORSE

Figure 17. xAI example.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 38 of 77 © 2023-2025 HORSE

5 Development of the Policies and Data Governance

5.1 User Stories

For the description of the Policies and Data Governance component, we have opted to employ
user stories. In software development and product management, a user story is an informal,
natural language description of features of a software system. A user story is written from the
perspective of an end user or user of a system.

In particular for the PAG, the user of the software is understood to be the “HORSE Operator”,
i.e. an individual with 6G domain knowledge who is using the HORSE platform in order to set
up a 6G monitoring infrastructure. The user stories related to the PAG stem from the PAG
requirements (see Appendix B) and have been written around the main functionalities of
access management, data anonymisation, data retention, data encryption and observability.
For each user story, acceptance criteria is given, which will help the development &
management teams to define a user story as done, or still in-progress.

5.1.1 Access Management

Access Management

As a HORSE Operator

I want to Use a “Policies Editor” (part of the HORSE Dashboard)

So that I manage the access policies on the collected datasets

Acceptance Criteria

• The user can define the level of the access policies on a dataset based on the requestor's
attributes.

• The user can update access policies on a dataset.

• The user can remove access policies on a dataset.

• The user can combine access policies on a dataset.

• The system automatically enforces access control decisions on the collected datasets
based on the associated dataset access policies.

The policies editor allows the HORSE Operator to grant/deny access to a specific dataset per
user and per component. In the former case, access to a specific dataset can be
granted/denied to a specific username. In the latter case, access to a specific dataset can be
granted/denied to a specific component from a list of HORSE system components, e.g., the
Early Modelling component, the DTE component, etc.

5.1.1.1 Implementation

For the implementation of the access management functionality, OpenFGA [23] is used as the
basis for the authorisation service, complimented by custom HORSE implementation using
Python programming language.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 39 of 77 © 2023-2025 HORSE

OpenFGA leverages Google’s Zanzibar, a global system for storing and evaluating access
control lists. Zanzibar provides a uniform data model and configuration language for
expressing a wide range of access control policies from hundreds of client services.
Furthermore, it supports Python, which is the programming language used for the custom
HORSE implementation. On the less positive side, OpenFGA makes it difficult to support
queries of the type “Allow access to all except…” which in certain cases might increase the
effort needed to express certain authorisation policies.

5.1.1.2 Sequence Diagrams

Figure 18. Create New Access Policy

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 40 of 77 © 2023-2025 HORSE

Figure 19. Check Access Authorization

Figure 20. Read Policies List

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 41 of 77 © 2023-2025 HORSE

Figure 21. List Authorization Objects

5.1.2 Data Anonymisation

Data Anonymisation

As a HORSE Operator

I want to Use a “Policies Editor” (part of the HORSE Dashboard)

So that I configure data anonymisation rules on the collected datasets

Acceptance Criteria

• The user can classify the disclosure risk for the dataset’s attributes.

• The user can define data anonymisation rules based on the classification of the dataset’s
attributes for disclosure risk and the anonymisation method used by the component.

• The system automatically executes data anonymisation operations on the collected
datasets.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 42 of 77 © 2023-2025 HORSE

5.1.2.1 Implementation

For the implementation of data anonymisation, the PAG will use a simple anonymisation tool
along with some custom implemented methods. The tool is called Smile [24] and implements
text anonymisation in many languages using Faker.

Smile includes methods on anonymising network-related fields (e.g., IP addresses, MAC
addresses, URLs, etc.).

Examples of possible anonymisation methods that the HORSE Operator can select on a
column:

• IPv4, IPv6 Address Masking: changes an IPv4 or/and an IPv6 address into a fake one.

• Text Masking: changes a text/string by adding '*' characters into the string.

• Perturbation: adds “random noise" to a numeric field

• Date Masking: changes a date value into a fake one.

The enforcement of anonymisation (e.g., the anonymisation of certain attributes of a stored
dataset) is applied in the data store(s) of the HORSE platform. For more information on the
available data store(s) of the HORSE platform, see section 5.2.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 43 of 77 © 2023-2025 HORSE

5.1.2.2 Sequence Diagrams

Figure 22. Store Anonymisation Config & Perform Anonymisation

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 44 of 77 © 2023-2025 HORSE

Figure 23. Retrieve Anonymisation Config

5.1.3 Data Retention

Data Retention

As a HORSE Operator

I want to Use a “Policies Editor” (part of the HORSE Dashboard)

So that I manage the data retention rules of the collected datasets

Acceptance Criteria

• The user can define retention rules for a collected dataset based on the dataset’s attributes
(e.g. delete dataset 3 years after the collection timestamp, delete dataset 24h after the
collection timestamp for datasets originating from RAN, etc.).

• The user can update retention rules of a dataset.

• The user can remove retention rules of a dataset.

• The user can combine retention rules of a dataset.

• The system automatically implements dataset retention rules at the correct timing for the
collected datasets.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 45 of 77 © 2023-2025 HORSE

5.1.3.1 Implementation

For the implementation of data retention, a simple, lightweight Python job scheduler [25] was
used. It offers:

• functionality to run in the background, in a separate thread;

• many options for setting up a scheduler which runs at specified intervals;

• functionality for exception handling.

The enforcement of the retention policy (e.g., the deletion of a dataset) is applied in the data
store(s) of the HORSE platform. For more information on the available data store(s) of the
HORSE platform, see section 5.2.

5.1.3.2 Sequence Diagrams

Figure 24. Create New Retention Policy

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 46 of 77 © 2023-2025 HORSE

Figure 25. Enable Retention Policy

Figure 26. Read Retention Policies List

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 47 of 77 © 2023-2025 HORSE

5.1.4 Data Encryption

Data Encryption

As a HORSE Operator

I want to Use a “Policies Editor” (part of the HORSE Dashboard)

So that I configure encryption on the collected datasets

This user story shall be further elaborated in deliverable D3.2 HORSE Platform Intelligence
developed (IT-2).

5.1.5 Observability

Observability

As a HORSE Operator

I want to Use a UI

So that I monitor the execution status of the dataset collection jobs

This user story shall be further elaborated in deliverable D3.2 HORSE Platform Intelligence
developed (IT-2).

5.2 Datasets

The following datasets have been used during the development of the initial release of the
PAG component and have been imported in the Demo Data Store:

• sample_data.json

This file contains sample data regarding VNFs that belong to a simulated 5G Network.
In order to capture the bytes transmitted, Kiali and Prometheus were reused on top of
the containerized network Istio Service Mesh.

The captured metric is istio_request_bytes_sum (the total number of bytes, added
together across all requests).

The data model which accommodates the captured metric is an array of values that
capture the sum of bytes every 15 seconds beginning with metadata in each value.

The values list contains all the requests performed in the 5G network.

• 5G-NIDD

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 48 of 77 © 2023-2025 HORSE

This dataset presents 5G-NIDD [26], a fully labelled dataset built on a functional 5G
test network that can be used by those who develop and test AI/ML solutions. 5G-NIDD
contains data extracted from a 5G testbed. The testbed is attached to 5G Test Network
in University of Oulu, Finland. The data are extracted from tow base stations, each
having an attacker node, several benign 5G users. The attacker nodes attack the server
deployed in 5GTN MEC environment. The attack scenarios include DoS attacks and
port scans. Under DoS attacks, the dataset contains ICMP Flood, UDP Flood, SYN
Flood, HTTP Flood, and Slowrate DoS. Under port scans, the dataset contains SYN
Scan, TCP Connect Scan, and UDP Scan.

5.2.1 HORSE Data Store

At M12 of the project, as per the architecture described in deliverable D2.2, the main data store
for the data assets in the HORSE project resides inside the pre-processing module.

The design of the PAG component has taken into account the possibility that during the
evolution of the project, multiple distributed data stores might become available. The PAG
component has implemented a structure in which datasets and their data stores are connected,
which enables the PAG to extend its implementation and support multiple data stores,
unknown at M12, in case this need arises in the future.

5.2.2 Demo Data Store

A demo data store has been implemented provisionally for the development of the PAG initial
release. This demo data store is based on MinIO and holds the demo datasets available at
M12 of the project.

The demo data store will not be maintained beyond the development of initial release of the
PAG component.

MinIO [27] is a high-performance, S3 compatible object store. It is built for large scale AI/ML,
data lake and database workloads. It is software-defined and runs on any cloud or on-premises
infrastructure.

MinIO is built to deliver exceptional speed and efficiency, allowing organizations to effortlessly
manage and scale their object storage needs. Its flexibility, ease of deployment, and robust
features make MinIO a compelling choice for businesses seeking a reliable and cost-effective
solution for distributed object storage.

Below is a screenshot from MinIO Console, the web-based graphical user interface that MinIO
provides. MinIO Console is a useful tool for interacting with a MinIO Server and manage
various tasks like Identity and Access Management, Metrics and Log Monitoring, or Server
Configuration.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 49 of 77 © 2023-2025 HORSE

Figure 27. MinIO Console

Figure 28. Create New Asset

Figure 29. Read Assets List

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 50 of 77 © 2023-2025 HORSE

5.2.3 Metadata

The PAG Storage does not store data assets per se; it stores the metadata of the data assets,
while the data assets themselves are stored in the available data store(s) of the HORSE
platform (see 5.2.1 and 5.2.2 above). For each dataset, the following metadata are imported
into the PAG Storage:

• name

• description

• file type (e.g., json, csv)

• the path of the dataset inside the data space

• columns (types and names in a json format columns

5.3 Development Roadmap

The initial release of the PAG component comes on M13 of the project, as a standalone
component ready to be integrated. It includes the functionality for access management, data
anonymisation and data retention, as described with the help of user stories in section 5.2
above. Additionally, it includes (i) the PAG storage for storing the metadata and the policies,
and (ii) the Demo Data Store for storing the datasets.

The functionality for data encryption and observability shall be further elaborated in deliverable
D3.2 HORSE Platform Intelligence developed (IT-2) and will be developed as part of the final
release of the PAG component on M30. Additionally, the final release shall include the
connection with the HORSE Data Store and any updates or enhancements to the
functionalities already delivered on M13.

PAG initial release (M13) PAG final release (M30)

Access Management Data Encryption

Data Anonymisation Observability

Data Retention Connection with HORSE Data Store

Demo Data Store
Enhancements/Updates of functionalities
delivered on M13

PAG Storage

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 51 of 77 © 2023-2025 HORSE

6 Development of the Threat Detector and Mitigation
Engine

6.1 Threat Detector and Mitigation Engine Features

According to the main concepts described in Section 3.2 of the HORSE Architectural
Deliverable D2.2 [28], here recalled for the sake of simplicity, the HORSE platform
encompasses three main layers:

• the Intent-based Interface (IBI), that aims to simplify the network configuration and
operation by receiving high-level intents from the network manager or software agents.

• the AI Secure and Trustable Orchestration (STO) module, that enables reliable network
operation by assuring correct orchestration of the network resources and execution of
policies proposed by the IBI layer.

• the Platform Intelligence (PIL) module, that adds intelligence and autonomy to the network
management, including sub-modules that can predict the behaviour of the network before
reconfiguring the network and sub-modules capable of detecting and reacting to network
security threats, i.e., the Real Context -DEME component Figure 30.

Figure 30. DEME sub-module in the overall architecture [28].

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 52 of 77 © 2023-2025 HORSE

The Detector and Mitigation Engine (DEME) works in the “real context” providing threat

detection in the real infrastructure. It focuses on threat detection and high-level mitigation

advise with a special attention to the most dangerous attack cases, able to impact, and often

paralyze, whole portions of the network for a long amount of time [28].

Figure 31. HORSE Threat Detector Block Diagram

The conceived solution applies a ML pipeline or chain architecture (that are currently seldom

applied and mainly on the image processing arena [41]) to improve the SotA.

The overall implemented solution, exemplified in Figure 31, consists of a double processing

step, easily extendible with further steps according to the evolving future cybercrime

landscape.

The first ML step 1 is dedicated to the baseline elaboration and real-time parameters variations

computation and therefore allows to avoid provisioning complex thresholds sets.

The last step, ML step 2, is able to analyse simultaneously all the parameters variation in order:

• Provide Early Detection on any known alarm identifiable by the M monitored parameters,
much faster than using SotA specific detectors.

• Provide Early Detection on any unknown alarm, 0-day, identifiable by the M monitored
parameters.

• Provide a relative attack probability or detection confidence.

• Automatically adapt the probability numerical evaluations based on the network evolution.

More in detail, the scheme that has been conceived, implemented and tested, is constituted

by a sequence of three specialized steps, Figure 32, whose composition is particularly suited

to the functional requirements outlined.

1) STEP1: Use of predictive analytics (Supervised) ML tools (i.e., regressions) trained by
the historical network data. This first step must provide N parallel blocks, one for each
monitored parameter, and must be able to provide in output the N real-time
comparisons of the current network data (that are periodically collected) with the
predicted baselines.

2) STEP2: Use of a numerical elaboration to normalize and adapt the N comparison
outputs in order to provide the following ML step a homogeneous set of data to work

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 53 of 77 © 2023-2025 HORSE

upon. Each comparison, indicated with ∆ in Figure 32, will have to be normalized and

adapted.
3) STEP3: Use of a (Supervised) ML tool trained on the variations of the N variables

provided by the previous steps to promptly detect any related attack with a 360 degrees
perspective (no siloization).

Figure 32. ML-based chained attack detector steps

6.1.1 Step by step detailed operation description

The first stage, STEP1, foresees the application of predictive Supervised Machine Learning
Techniques.

In this step many techniques have been tried and among them stands out the first
implementation of a new regression algorithm (Ericsson patent) specifically conceived for
threat detection sped-up (detailed tests results will be available and presented in the second
phase of the HORSE project, in the next version of this deliverable, D3.2, and in the WP5
context).

Each regression is trained with a proper set of historical values and is able to retrieve a trained
model, i.e., a kind of predicted trend or baseline that is automatically updated during the
following network life.

It is just the case to mention that different concurrent and multi-threading technologies and
frameworks have been investigated, applied and tested to achieve the best performance and
scalability results.

After the training phase, each ML regression starts comparing the current values extracted
from the network with the expected (predicted) trends.

It is important to highlight the fact that no threshold scheme is applied on the comparison
outputs: the computed differences are only normalized and adapted, in the STEP2 stage, in
order to provide the last ML block with a homogeneous and consistent data space.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 54 of 77 © 2023-2025 HORSE

Figure 33. STEP1 regressions

Figure 33 shows in green the predicted trend and in red the current values that are
progressively collected and compared with the green prediction in search of any possible
anomaly.

During normal states, the normal network fluctuations cause the red curve to ripple around the
green predictions, therefore the ∆ comparison will result in relatively small rippling values.

At the beginning of a real attack, highlighted by the light blue area, traffic is starting to grow but
its difference with the expected value (∆ comparison) has not yet reached very high values.
Therefore, the last ML stage, STEP3, during the training phases will observe small rippling
values relatives to both normal states and relative to the initial stages of the attacks. It will
therefore estimate a normal or attack probability based on the historical attack frequency (the
occurrence rate). In other words, if an attack occurs repeatedly the ML learning STEP 3 will
tend to modify the confidence levels associated to small rippling values and vice versa.

During the attack the monitored parameter rumps up in a very short time and the detector
progressively increase the associated detection confidence triggering the network
management mitigation actions.

After detections but before that the mitigation actions are activated and become effective the
monitored parameter shows a saturation effect.

After the mitigation actions have become effective the monitored parameter rapidly decreases
reaching again the normal state.

Normal state achieved after the effect of the mitigation actions.

In the bottom part of Figure 33, in orange we can see the absolute and normalized value of the
comparison, indicated as ∆.

To implement the egress stage, STEP 3, of the proposed architecture, the research activities
have also tested multiple different flavours of Supervised Machine Learning algorithms (e.g.,
Multivariate techniques, Linear Regressions, Random Forest, XGBoost, Decision Tree) with
appreciable results that will be completed and presented in the successive version of this
deliverable D3.2, and in the context of WP5.

STEP 3, the stage with the highest overall visibility, is able to learn and distinguish the overall
normal network fluctuations of all the monitored variables from their attack indicating
anomalies.

1

2

3

4

5

6

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 55 of 77 © 2023-2025 HORSE

By the way, in doing so, it dynamically and run-time automatically follows and adapt its
detection to each network evolution or traffic modification without any external setting (e.g.,
threshold tuning, parameter configurations etc.) improving its performances and making it
perfectly suitable for a really one hundred per cent zero-touch solution.

6.1.2 The new regression algorithm

The Machine Learning process of dynamic updating the learnt model, which is undoubtedly a
strength point as it automatically allows the forecasts to follow and adapt to evolutions in
infrastructure, traffic, etc., constitutes, depending on the characteristics of the time series being
analysed at input, an important weight in the total detection time.

For more details on the innovative regression algorithm conceived to reduce it (Patent
WO2021190760) [47], please refer to Annex D.

6.1.3 Innovative aspects summarization

In compliance with the requirements outlined in the first part of this chapter, the threat detector
has been designed to meet the requests of performances, scalability, speed, flexibility and
automation.

The solution conceived and implemented presents several innovative aspects that distinguish
it from the state of the art:

1. From the point of view of detection speed, in addition to multiple measures applied for
this objective, an innovative algorithm has been implemented for the first time which
exploits a weighted linear combination of concurrent regressions working on the
original time-series x(t), on its time-shifted versions x(t-nT), and on their derivatives.

2. From the point of view of the detector architecture, a multi-stage ML solution has been
identified which, although sometimes applied in the field of Image processing, is
atypical in the field of CyberSecurity. This choice has proven particularly valid for its:

a. Flexibility - adequacy to detect multiple forms of attack, their combinations or
evolutions, new forms of attack (0-day) etc.

b. Suitability for fully automated solutions without any need to set and periodically
update complex threshold schemes or network configuration parameters, etc.

Additional important innovation aspects are related not to the detector component itself, but to
the innovative patterns resulting from interactions with other blocks (e.g., Digital Twin). These
aspects will be better described in the following version of this deliverable, D3.2, and in the
WP5 context.

6.2 Threat Detector and Mitigation Engine Interfaces

6.2.1 Ingress Interface

This interface, indicated with number 1 in Figure 30, allows the DEME block to receive the
input data from the preceding Smart Monitoring block, that continuously and capillary collects
them from the 6G infrastructure, and Pre-processing that unifies and standardizes the collected
data.

As previously explained, in the context of security, anomaly detection is a time-sensitive task.
Operators ideally want to be alerted of potential breaches or system failures within minutes of
suspicious signals. Every second counts when dealing with an attacker that is actively

https://ericsson-my.sharepoint.com/personal/orazio_toscano_ericsson_com/Documents/Lavoro/ProgettiFinanziati/6Green/WP3/6Green_Budget+Effort+WP+Deliverables_vSubmitted.xlsx?web=1

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 56 of 77 © 2023-2025 HORSE

exploiting a system. The other side of the coin is that thorough and very frequent data collection
is resource-intensive and can be burdensome for the infrastructure.

For these reasons reasonable trade-offs indicates practical and typical values from 3 minutes
to some tens of minutes [46].

The learning phase, considering a common value of 15 minutes, and a realistic training length
of at least some thousands of samples, requires more than three weeks making the
progressive mode unsuitable for practical real demonstrations.

For this reason, the DEME design and implementation has foreseen two separate micro-
services to better separate the history data from the run-time data ingestion:

• DEME-engine: containing the threat detector with the complete logic and its API as
described in the following paragraph. The DEME-engine provides different ways to input
the history data (e.g., from Data source, from file).

• DEME-proxy: a useful utility microservice that can be used to interface the DEME-engine
with a Kafka bus for run-time operations (consume data and publish outcomes).

Figure 34. DEME micro-services

The data input format is composed, for each snapshot, by an initial timestamp, followed by the
sequence of monitored data for each node composing the infrastructure topology. In the
following Figure 35 we see an example with eight values per node and two nodes.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 57 of 77 © 2023-2025 HORSE

Figure 35. Ingress data format

6.2.2 Egress Interface

This interface, indicated with number 2 in Figure 30 allows the DEME microservice to provide
the outcomes of its detections to the Distributed Trustable AI Engine (DTE). As previously
presented in Figure 34, also in this case the DEME engine provides its own API, hereinafter
detailed, but also a proxy utility that can be usefully applied for a straightforward connection
with a Kafka bus.

The Detector outcomes are updated with the same rate of the ingress snapshots: i.e., in case
of, for example, a 3-minute snapshot period from the Smart Monitoring block, the detector will
update its outcomes each 3 minutes (a part a very small computational time).

Therefore, also in case of direct interface with the DEME engine API in asynchronous mode
the outcomes are expected to be stable inside each ingress sampling period.

The DEME detector provides, for each node in the topology, the type of attack detected (if
any), and the detection confidence (with a 0 to 1 value).

As described in the previous sections, multiple attacks (attacks combinations) acting same
time to the same node are detectable (also providing a certain gain in terms of detection speed)
and the same applies to new forms of attack as long as they can be identified by leveraging
the space of the monitored variables.

6.2.3 Digital Twin Interface

The Digital Twin interface, indicated with number 3 in Figure 30, represents a high-level
exchange of information between the two blocks that allows conceptually to mutually benefit
from the knowledge acquired by the other block.

New forms of attacks or new, previously unseen, combinations detected by DEME will be
usefully elaborated by the Digital Twin to complete the “what – if” analysis and, for example,
provide suggestions for the best applicable mitigation action.

In turn, new hints from the Digital Twin may motivate changes, for example, in the DEME
ingress variables space to increase the detector visibility on new unknown aspects.

This interaction will allow the Horse framework to evolve thanks to the continuous learning of
new scenarios.

6.3 DEME Implementation overview

6.3.1 Background

This section describes how to check prerequisites, how to install the toolkit and how to verify
its correct installation on your system. It assumes some working knowledge of shell scripting
and docker.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 58 of 77 © 2023-2025 HORSE

We define these terms:

• Client: host from which commands will be run against the Server.

• Server: host where workloads are executed.

All commands are executed on the Client. It is assumed that Client and Server are separate
hosts.

6.3.2 Prerequisites

• Docker installed on own machine.

• Move to the root folder of the toolkit in order to proceed with the installation.

6.3.3 Installation

• Launch the script to build the docker image of the server:

./build-engine.sh <version>

• Now the server is ready to be started by launching:

./run-engine.sh <version>

<version> is the minor version number.

• To verify that the server is correctly started send a GET request to the address
localhost:8090/is_ok and check that the response is {"message": "ok"}

6.3.4 Interfaces

1. Management Methods

HTTP
Method

Path Action

GET /is_ok Healthcheck of Server
GET /is_ready Rediness of the Server

GET /dump
Returns configuration parameters of the
Server

2. Operational Methods

HTTP
Method

Path Action

POST /estimate
Take in input a snapshot of network
parameters and it elaborates the attack
detection

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 59 of 77 © 2023-2025 HORSE

3. Extraction Methods

These methods are meaningful just after running Operational Methods.

HTTP
Method

Path Action

GET /ro
For all nodes it returns the accuracy of the
detection of the identified attack.

GET /ro_verbose
For all nodes it returns the accuracy in % of the
detection of the identified attack in a verbose
mode

GET /teta
For all nodes it returns the type of the
detected attack expressed as angle

GET /teta_verbose
For all nodes it returns the type of the
detected attack in a verbose mode

 GET /detection
For all nodes it returns the type and the
probability of detected attack

6.3.5 Usage

In this section it is described an example of the usage of the toolkit. Since in this first iteration
the toolkit is running in a standalone way, the history data and a snapshot of network features
are locally loaded. So, in this procedure APIs will be sent using CURL command that will be
replaced by the operations inserted in the next iterations.

• Start the Server

• Check it is ready using the GET request /is_ready

curl -X GET http://localhost:8090/is_ready

If true, the server is ready.

• Send from the Client the POST request/estimate passing as parameter a json containing
the snapshot of network parameters in a specific moment.

curl -H 'Content-Type: application/json' -d "@atk-root/data/test.json" -X POST
http://localhost:8090/estimate

Request returns a “done” message when it ends the elaboration.

- To extract the detection related to the current sent snapshot send form the Client the
GET request /detection

curl -X GET http://localhost:8090/detection

 The requests return a json response in this format:

[

 {

 "node": "<node>",

http://localhost:8090/estimate

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 60 of 77 © 2023-2025 HORSE

 "detection": [

 {

 "attack": "<type>",

 "accuracy": <accuracy>

 }

]

 }

]

6.3.6 Debugging tools

For debugging purpose, a simple web application has been developed.

For example, the user can set, using sliders, different combinations of network features. The
system will predict in real time the probability of attack. This will be show in the related chart.
When the probability of an attack exceeds a fixed threshold, the line of the chart becomes red
to notify the user.

Figure 36. HORSE Real-time attack detection web.

In order to run the debugging tool:

• Start the toolkit Server and check it is ready.

• Move to the root folder of the debugging tool.

• Run horse_debug_tool.html using a browser.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 61 of 77 © 2023-2025 HORSE

7 Conclusions

This deliverable reflects a summary of the progress of the work done in Work Package 3. All
the developments will be in continuous update also along with Work Package 5 and the Task
Forces defined to better integrate the work of each partner into the project.

All the final developments and a total integration of the components explained here will be
portrayed on the IT-2 document version of the Work Package 3.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 62 of 77 © 2023-2025 HORSE

References

[1] Kubernetes https://kubernetes.io/

[2] Kubernetes Network Emulator https://github.com/openconfig/kne

[3] VR Network Lab https://github.com/vrnetlab/vrnetlab

[4] EVE-NG https://www.eve-ng.net/

[5] Prometheus, “Monitoring system & time series database”, https://prometheus.io/

[6] OTEL, “OpenTelemetry”, https://opentelemetry.io/

[7] Node Exporter, “Exporter for hardware and OS metrics”,
https://github.com/prometheus/node_exporter

[8] KSM, “kube-state-metrics”, https://github.com/kubernetes/kube-state-metrics

[9] Alertmanager, https://prometheus.io/docs/alerting/latest/alertmanager/

[10] Z. Xiang, S. Pandi, J. Cabrera, F. Granelli, P. Seeling and F. H. P. Fitzek, "An Open-
Source Testbed for Virtualized Communication Networks," in IEEE Communications
Magazine, vol. 59, no. 2, pp. 77-83, February 2021, doi: 10.1109/MCOM.001.2000578.

[11] Comnetsemu, https://git.comnets.net/public-repo/comnetsemu

[12] “Mininet website”, http://mininet.org

[13] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, Nick McKeown,
“Reproducible Network Experiments Using Container-Based Emulation,” CoNEXT’12,
December 10–13, 2012, Nice, France.

[14] D. Muelas, J. Ramos and J. E. L. d. Vergara, "Assessing the Limits of Mininet-Based
Environments for Network Experimentation," in IEEE Network, vol. 32, no. 6, pp. 168-176,
November/December 2018, doi: 10.1109/MNET.2018.1700277

[15] ETSI TS 123 288 V17.4.0 (2022-05), 5G; Architecture enhancements for 5G System
(5GS) to support network data analytics services (3GPP TS 23.288 version 17.4.0 Release
17)

[16] A. Giannopoulos, S. Spantideas, N. Kapsalis, P. Karkazis and P. Trakadas, "Deep
Reinforcement Learning for Energy-Efficient Multi-Channel Transmissions in 5G Cognitive
HetNets: Centralized, Decentralized and Transfer Learning Based Solutions," in IEEE Access,
vol. 9, pp. 129358-129374, 2021, doi: 10.1109/ACCESS.2021.3113501.

[17] Synthetic Data Set for Network Data Analytics Function (NWDAF),
https://github.com/sevgicansalih/nwdaf_data

[18] 5GAD-2022 5G attack detection dataset, https://github.com/IdahoLabResearch/5GAD

[19] 5GC PFCP Intrusion Detection Dataset, https://ieee-dataport.org/documents/5gc-pfcp-
intrusion-detection-dataset-0

[20] 5G-NIDD: A Comprehensive Network Intrusion Detection Dataset Generated over 5G
Wireless Network, http://ieee-dataport.org/10203

[21] Flower – A Friendly Federated Learning Framework, https://flower.dev/

[22] Samarakoon, Sehan, et al. "5G-NIDD: A Comprehensive Network Intrusion Detection
Dataset Generated over 5G Wireless Network." arXiv preprint arXiv:2212.01298 (2022).

[23] OpenFGA, https://openfga.dev/

[24] https://github.com/Smile-SA/anonymization

https://kubernetes.io/
https://github.com/openconfig/kne
https://github.com/vrnetlab/vrnetlab
https://www.eve-ng.net/
https://prometheus.io/
https://opentelemetry.io/
https://github.com/prometheus/node_exporter
https://github.com/kubernetes/kube-state-metrics
https://prometheus.io/docs/alerting/latest/alertmanager/
https://git.comnets.net/public-repo/comnetsemu
https://flower.dev/
https://openfga.dev/
https://github.com/Smile-SA/anonymization

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 63 of 77 © 2023-2025 HORSE

[25] https://github.com/dbader/schedule

[26] 5G-NIDD – A Comprehensive Network Intrusion Detection Dataset Generated over 5G
Wireless, https://www.kaggle.com/datasets/humera11/5g-nidd-dataset

[27] MinIO, https://min.io/

[28] Horse project consortium, D2.2 “HORSE Architectural Design (IT-1)”, September 2023

[29] https://www.astrid-project.eu/publications.html#AnDeliverables

[30] Sigma Telecom – How DDoS Affects Telecommunication security -
https://www.sigmatelecom.com/post/ddos-telecommunication-security

[31] Sam Cook - 20+ DDoS attack trends and statistics (2018-2023): The rising threat -
https://www.comparitech.com/blog/information-security/ddos-statistics-facts/

[32] Rohit Kharat, Avesh Mirza, - What metrics can you use to measure cyber-attack detection
and response times? - https://www.linkedin.com/advice/1/what-metrics-can-you-use-
measure-cyber-attack-detection-4ymoc

[33] H. Vincent Poor, Princeton University, New Jersey, Olympia Hadjiliadis, Brooklyn College,
City University of New York – Quickest Detection - Cambridge University Press -
https://doi.org/10.1017/CBO9780511754678

[34] Gene Yoo, Forbes Councils Member, The Importance Of Time And Speed In
Cybersecurity, https://www.forbes.com/sites/forbestechcouncil/2021/01/22/the-importance-of-
time-and-speed-in-cybersecurity/?sh=7b4f9e7336a9

[35] A Pras, JJ Santanna, J Steinberger, A Sperotto, in International GI/ITG Conference on
Measurement, Modelling, and Evaluation of Computing Systems and Dependability and Fault
Tolerance. Ddos 3.0-how terrorists ring down the internet (Springer, 2016), pp. 1–4

[36] JJ Santanna, et al., in IFIP/IEEE International Symposium on Integrated Network
Management (IM). Booters – An analysis of DDoS-as-a-service attacks, (Ottawa, 2015), pp.
243–251. https://doi.org/10.1109/INM.2015.7140298

[37] Andrea Chebac - DDoS-as-a-service Attacks. What Are They and How Do They Work? -
https://heimdalsecurity.com/blog/ddos-as-a-service-attacks-what-are-they-and-how-do-they-
work/#:~:text=Threat%20actors%20offer%20DDoS%2Das,also%20rump%20up%20the%20c
osts.

[38] Lily Hay Newman - Github ddos attack. www.wired.com/story/github-ddos-memcached/.

[39] Sufian Hameed, Usman Ali - HADEC: Hadoop-based live DDoS detection framework -
https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-018-0081-z

[40] RiskOptics – What is Cybersecurity Automation? - https://reciprocity.com/blog/what-is-
cybersecurity-
automation/#:~:text=Cybersecurity%20automation%20is%20a%20concept,run%20faster%20
and%20more%20efficiently.

[41] Giovanni Apruzzese, Michele Colajanni, Luca Ferretti, Alessandro Guido, Mirco Marchetti
University of Modena, On the Effectiveness of Machine and Deep Learning for Cyber Security
- https://ieeexplore.ieee.org/document/8405026

[42] Executing multiple ML models in a chain - https://learn.microsoft.com/en-
us/windows/ai/windows-ml/chaining

[43] Mehrdad Hajizadeh, Thomas Bauschert, Technische Universität Chemnitz, Probability
Analysis of Successful Cyber Attacks in SDN-based Networks -
https://www.researchgate.net/publication/333501063_Probability_Analysis_of_Successful_C
yber_Attacks_in_SDN-based_Networks

[44] Isabella Sansone, The Damaging Impacts of DDoS Attacks, https://www.corero.com/the-

https://github.com/dbader/schedule
https://www.kaggle.com/datasets/humera11/5g-nidd-dataset
https://min.io/
https://www.astrid-project.eu/publications.html#AnDeliverables
https://www.sigmatelecom.com/post/ddos-telecommunication-security
https://www.comparitech.com/blog/information-security/ddos-statistics-facts/
https://www.linkedin.com/advice/1/what-metrics-can-you-use-measure-cyber-attack-detection-4ymoc
https://www.linkedin.com/advice/1/what-metrics-can-you-use-measure-cyber-attack-detection-4ymoc
https://doi.org/10.1017/CBO9780511754678
https://www.forbes.com/sites/forbestechcouncil/2021/01/22/the-importance-of-time-and-speed-in-cybersecurity/?sh=7b4f9e7336a9
https://www.forbes.com/sites/forbestechcouncil/2021/01/22/the-importance-of-time-and-speed-in-cybersecurity/?sh=7b4f9e7336a9
https://doi.org/10.1109/INM.2015.7140298
https://heimdalsecurity.com/blog/ddos-as-a-service-attacks-what-are-they-and-how-do-they-work/#:~:text=Threat%20actors%20offer%20DDoS%2Das,also%20rump%20up%20the%20costs
https://heimdalsecurity.com/blog/ddos-as-a-service-attacks-what-are-they-and-how-do-they-work/#:~:text=Threat%20actors%20offer%20DDoS%2Das,also%20rump%20up%20the%20costs
https://heimdalsecurity.com/blog/ddos-as-a-service-attacks-what-are-they-and-how-do-they-work/#:~:text=Threat%20actors%20offer%20DDoS%2Das,also%20rump%20up%20the%20costs
http://www.wired.com/story/github-ddos-memcached/
https://jis-eurasipjournals.springeropen.com/articles/10.1186/s13635-018-0081-z
https://reciprocity.com/blog/what-is-cybersecurity-automation/#:~:text=Cybersecurity%20automation%20is%20a%20concept,run%20faster%20and%20more%20efficiently
https://reciprocity.com/blog/what-is-cybersecurity-automation/#:~:text=Cybersecurity%20automation%20is%20a%20concept,run%20faster%20and%20more%20efficiently
https://reciprocity.com/blog/what-is-cybersecurity-automation/#:~:text=Cybersecurity%20automation%20is%20a%20concept,run%20faster%20and%20more%20efficiently
https://reciprocity.com/blog/what-is-cybersecurity-automation/#:~:text=Cybersecurity%20automation%20is%20a%20concept,run%20faster%20and%20more%20efficiently
https://ieeexplore.ieee.org/document/8405026
https://learn.microsoft.com/en-us/windows/ai/windows-ml/chaining
https://learn.microsoft.com/en-us/windows/ai/windows-ml/chaining
https://www.researchgate.net/publication/333501063_Probability_Analysis_of_Successful_Cyber_Attacks_in_SDN-based_Networks
https://www.researchgate.net/publication/333501063_Probability_Analysis_of_Successful_Cyber_Attacks_in_SDN-based_Networks
https://www.corero.com/the-damaging-impacts-of-ddos-attacks/

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 64 of 77 © 2023-2025 HORSE

damaging-impacts-of-ddos-attacks/

[45] Akamai – Web Attacks and Gaming Abuse -
https://www.akamai.com/site/en/documents/state-of-the-internet/soti-security-web-attacks-
and-gaming-abuse-report-2019.pdf

[46] Clarence Chio, David Freeman – Machine Learning and Security – O’Reilly, ISBN:
9781491979907

[47] Gemme Luciano, Cappelli Marco, Ericsson Patent WO2021190760 “Determining an Alarm
Condition” https://www.patentguru.com/search?q=WO2021190760

https://www.corero.com/the-damaging-impacts-of-ddos-attacks/
https://www.akamai.com/site/en/documents/state-of-the-internet/soti-security-web-attacks-and-gaming-abuse-report-2019.pdf
https://www.akamai.com/site/en/documents/state-of-the-internet/soti-security-web-attacks-and-gaming-abuse-report-2019.pdf
https://www.patentguru.com/search?q=WO2021190760

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 65 of 77 © 2023-2025 HORSE

Appendix A: Meaningful use cases

Reflection/Amplification DDoS attacks

“Telecommunication biggest issue was and will be denial of service” [29]

Distributed denial of service (DDoS) attacks, are among the most common attacks that
telecommunications companies must dodge on a daily basis [30]

The internet and telecom industry was among the industries that experienced the largest
increase in DDoS attacks, up 210% on a yearly base [31]

The types of attacks that are most dangerous in network management are indeed the ones
that can potentially paralyze the entire network, or a large part of it, and that require long
recovery times impacting the activities of a very large number of users, and among these, in
first place, there are undoubtedly the DDoS attacks.

DDoS attacks are still on the rise [44], and important actors in the CyberSecurity field like
Norton calls them “one of the most powerful weapons on the internet”.

Denial-of-service attacks can come at any time, impact any part of infrastructures operations
or resources, and lead to massive amounts of service interruptions and huge financial losses
(for example in terms of remediation costs, lost revenue, lost productivity, loss of market share,
and damage to brand reputation [44]).

For example, Yahoo!, who experienced one of the first major DDoS flooding attacks, saw their
services offline for about 2h [29].

The same happened in occasion of the “largest ever” internet attack, when a 9 of the 13 domain
name system (DNS) root servers were shut down for an hour-long DDoS flooding attack [30],
or the notorious IoT device based DDoS attack that involved malicious DNS lookup requests
from tens of millions of IP addresses that rendered major Internet platforms and services
unavailable to large swaths of users in Europe and North America for several hours throughout
the day [31].

DDoS attacks are characterized by a sharp increase in the malicious traffic with which the
networks are flooded, and the network operators’ mitigation actions need to be very timely
because these kinds of attacks are able, in a very short time, to paralyze the whole network
making it not responsive.

Considering that any delay in detecting the flooding attacks risks making any mitigation action
useless, these are the most challenging cases to effectively provide a near-real time attack
detection able, at the same time, to face the explosive increase in the volume of Internet traffic
and evolving sophistication of the attacks.

Among this family a particularly dangerous subset is undoubtedly represented by the reflection
amplification attacks, mainly due to the fact that they are extremely cheap for hackers who
exploit the victim's own infrastructure (please note that the attack probability of occurrence is
directly proportional to the attack cost coefficient [43]).

The same GitHub attack mentioned in Appendix C, as one of the largest known, was in fact
precisely A DDoS reflection amplification attack coming from thousands of different
autonomous systems and tens of thousands of unique endpoints.

This subtype of attack is a combination of two malicious factors.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 66 of 77 © 2023-2025 HORSE

First, the attacker simulates a request from the targeted server by putting its IP address into
the request, ultimately using a public server as a “reflector.” The server receives the request
indicating the targeted server and returns a response to it, thus “reflecting” the request. A lot
of data can be requested, which means the response of the DNS server can become many
times larger, and the ratio is indicated with “amplification ratio” or “gain ratio” (that in the GitHub
attack case reached 51000, please refer also to Table 4). Finally, traffic is maximized by
querying through a botnet so that the bandwidth of the targeted server is overloaded.

Figure 37. Reflection Amplification Attack Scheme

Table 4. Amplification factors

Protocol/Server
Amplification

factor

Memcached 10000 to 51000

NTP 556.9

ChartGEN 358.8

QOTD 140.3

RIPv1 131.24

CLDAP 56 to 70

LDAP 46 to 70

DNS 28 to 54

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 67 of 77 © 2023-2025 HORSE

Quake Network
Protocol

63.9

TFTP 60

SSDP 30.8

MSSQL 25

Kad (P2P) 16.3

Portmap
(RPCbind)

7 to 28

SNMP 6.3

Stream Protocol 5.5

NetBIOS 3.8

BitTorrent 3.8

Multicast DNS
(mDNS)

2 to 10

Among the most interesting example cases, in addition to the GitHub worldwide famous DNS
case, stands out the NTP one, first of all because it touches the network synchronization
servers, that are crucial for the operation of the radio network, and secondarily because it
implies a more complex flow analysis (i.e., NTP “MONLIST” packets, NTP type=7) that
however can lead to detection speed improvements.

API Vulnerability Protection (e.g., RNAA attack)

According to a 2019 Akamai study [45], 83% of all web traffic was produced by APIs. Since
APIs are now the simplest approach to provide functionality and data in an information system,
this trend will likely continue.

But while the usage of APIs has expanded and produced more sophisticated apps that
enhance productivity and use in the business world, it has also sharply increased the risk of
cyberattacks. In fact, because of their exposure and "critical" role in handling sensitive data,
they are easy targets for cyberattacks. Thus, a cybersecurity strategy's primary component
needs to be API security.

The same level of attention must be paid not only to web applications but also to 5G/6G SBA
Network function (e.g., Network Exposure Function (NEF) expose the 3GPP network
capabilities via APIs).

The most common forms of API attacks comprise:

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 68 of 77 © 2023-2025 HORSE

• DoS attacks trying to exhaust the limited resource that an API needs to respond to
legitimate requests. By flooding an API with false requests, its resources are blocked from
responding to those requests and not to others.

• Bruce force attacks trying to test all possible combinations of a parameter, through a
process of trial and error in the hope of guessing right. he objectives can be multiple: brute
force of an authentication form to steal an account, brute force of a login to retrieve
sensitive data, brute force of a secret, etc.

• Code injections: If attackers know the programming language used by an application or
API, they can inject code through text input fields to force the web server to execute the
desired instructions.

DoS signalling attack from 5G SMF/UPF (PFCP) impacting on data
plane & slicing

A particularly dangerous enhancement of this attack is its fusion with a variant of the PFCP
Flood Attack.

Assuming that a malicious user has gained access to the SMF NF and wishes, for example,
to interrupt the connectivity of UEs without targeting a particular subscriber, they can run the
session deletion attack numerous times with incrementally increasing SEIDs. As no other
identifier is requested by PFCP for the deletion of a session by UPF, a malicious SMF can
instantiate a flood of session deletion request, carrying either random or increasing SEIDs.
This allows the easy automation of attacks, as only a single identifier is required for the control
of subscribers’ sessions. This flood-based variation of the PFCP Session Deletion attack is
described by Algorithm 1 in Figure 39.

Figure 38. SMF / UPF N4

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 69 of 77 © 2023-2025 HORSE

Figure 39. Session Deletion Attack

Man in the Middle – TCP Session Hijacking Attack

The well-known background of the TCP Session Hijacking attack is based upon TCP packet
spoofing. The TCP spoofed packets, whose signature matches that of an existing TCP session
are accepted by the target machine if the four elements shown in Figure 40 match with the
signature of the session and if provided with an acceptable sequence number.

Figure 40. Injection data into a TCP connection

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 70 of 77 © 2023-2025 HORSE

Appendix B. PAG Requirements

The functional requirements related to PAG, according to deliverable D2.1, are the following
and are presented in this annex as a reminder to the reader:

REQ-F-23 - Access Management - The user must be able to define and then the HORSE
platform must enforce access policies in real time and ensure that the information is only
available to authorised users (applies to PAG and IBI).

REQ-F-25 - Granularity of the access - The HORSE platform should be able to support different
roles in accessing the system (applies to PAG and IBI).

REQ-F-35 - Data anonymisation - The HORSE platform must execute data anonymisation
operations on collected data assets.

REQ-F-36 - Data Encryption - The HORSE platform must support end-to-end data encryption
for data in transit.

REQ-F-37 - Observability - The HORSE platform should allow the user to monitor the status
(successful or failed execution) and view an incident summary of all AI pipelines.

REQ-F-38 - Data Retention - The user should be able to define and then the HORSE platform
should execute data retention operations (e.g., automated deletion after a certain due date) on
collected data assets.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 71 of 77 © 2023-2025 HORSE

Appendix C. KPI related to the detector performances

Before delving into the solution conceived and implemented specifically for the HORSE
platform, it is certainly useful and appropriate to review the main requirements and KPIs of a
modern, effective and high-performance threat detector.

Measuring the performance of a detection algorithm is crucial in order to evaluate its
effectiveness and the specialized literature reports several types of metrics used for this
objective:

• Detection Rate (DR)

• Precision (P)

• False positive rate (FPR)

• Accuracy rate (AR)

• F1 score (F1)

• Fitness function (F)

• Time to Detect (TTD)

DR: Detection rate, also known as recall, is the ratio of correctly predicted positive observations
to all observations in the actual class

𝐷𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

P: Precision is the ration of correctly predicted positive observations to the total predicted
positive observations.

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

FPR: False positive rate, also known as fall-out or false alarm ratio, is the ratio between the
number of negative events wrongly categorized as positive and the total number of actual
negative events.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

AR: Accuracy rate is simply a ratio of correctly predicted observation to the total observations.

𝐴𝑅 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃

F1: Weighted Average of detection rate and precision.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 72 of 77 © 2023-2025 HORSE

𝐹1 = 2 ∗
𝐷𝑅 ∗ 𝑃

𝐷𝑅 + 𝑃

F: Fitness is a statistical metric used to evaluate the accuracy of the developed solution. A
detection system will determine which subset of features are the best according to the fitness:

𝐹 = 2 ∗
𝛼 ∗ 𝐷𝑅

𝛽 − (100 − 𝐹𝑃𝑅)

Where:

• True positive (TP) is the number of attacks that have been classified properly.

• True negative (TN) is the number of normal records that have been classified properly.

• False positive (FP) is the number of normal records that have been classified as attacks.

• False negative (FN) is the number of attacks that have been classified as normal.

• α(0,1] e β=1-α are two parameters that respectively specify the importance between DR
and FPR.

KPI related to the lifecycle of a cyber attack

The lifecycle of a cyber-attack is referred to as the time which has elapsed between the initial
detection and containment of the breach or attack. The detection time, or time to detect (TTD),
is the length of time that it takes for a business to identify a cyber incident has occurred, whilst
the response time, or time to respond (TTR), is how long it takes to restore networks or services
once a cyber incident has been initially detected.

In cybersecurity, speed defines the success of both the defender and the attacker. Professional
cybercriminal groups, nation-state actors and advanced persistent threat groups are evolving,
as are their tools, tactics and procedures and nowadays only need seconds to exploit a
vulnerability.

Such situations took place, for example, in winter 2019 when threat actors were mass-scanning
the internet for network hosts with particular VPN products having a critical vulnerability to
perform remote code execution (RCE). In minutes, thousands of enterprises were
compromised. [34]

Some specific, but unluckily very common forms of attacks (e.g., the availability resources /
DDoS ones), are characterized by a sharp increase in the malicious traffic with which the
networks are flooded, and the network operators’ mitigation actions need to be very timely
because these kinds of attacks are able, in a very short time, to paralyze the whole network
making it not responsive (please see, for example, Figure 41).

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 73 of 77 © 2023-2025 HORSE

Figure 41. Real case of an NTP amplification DDoS attack

Considering that any delay in detecting the attack risks to make any mitigation action useless,
the challenge is to effectively provide a near-real time attack detection able, at the same time,
to face the explosive increase in the volume of Internet traff ic and evolving sophistication of
the attacks.

TTD : Time to detect is one of the most important metrics for cyber attack detection. It
measures how long it takes to discover an incident. The shorter the TTD, the faster it is possible
to contain and remediate the attack, and the lower the potential damage. A rapid response
plays a pivotal role in mitigating the potential damage caused by cyber attacks [32] [33].

TTR : Another key metric for cyber attack response is the time to respond (TTR), which
measures how long it takes for the system to take action after detecting an incident. The
shorter the TTR, the more effective the response strategy, and the higher the chances of
minimizing the impact of the attack. To calculate the TTR, the system need to track the time
from when the incident was detected to when it was resolved or closed [32] [33].

Additional requirements / KPI

• Scalability: Recent analysis reveals that with little effort, next generation cybercrime tools
would be able to enact attacks that are thousand times stronger than the ones we have
seen so far [34]. One of the major concerns is that performing very effective attacks (as
the DDoS ones) is extremely simple with websites known as Booters or Stressers that
offer them as a service. These booters provide cheap services, and the costs to perform
a series of attacks is typically just a few dollars [35].

DDoS-as-a-service, for example, is part of the cybercrime-as-a-service model and implies
a hacker providing DDoS (Distributed Denial of Service) attacks for money. The vendor
usually owns a botnet and advertises his services on the Dark Web. The buyer – who can
be another hacker or a random individual – selects the target, the type, and the duration
of the attack. The fee they agree upon is most of the time paid in cryptocurrency. The
anonymity of this transaction is guaranteed, as there is no contact between the hacker
and the buyer. [36]

A further example of how impressive the modern attacks that hackers are able to carry out
can be, we can mention reflection amplification attacks.

Recently, GitHub was hit by 1.35 Tbps of traffic all at once [37].

It was one of the most powerful attacks in the history of DDoS, no botnet was required to
achieve such high traffic volume. The attackers spoofed GitHub’s IP addresses and took
control of its memcached (a distributed memory system known for high performance and
demand) instances. The memcached systems then return 50 times the data of the
requests back to the victim.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 74 of 77 © 2023-2025 HORSE

GitHub was lucky enough to a afford robust DDoS mitigation service (Akamai Prolexic)
and the assault dropped off after 8 min but it is now crystal clear that the explosive increase
in the volume of Internet traffic and the sophistication of modern attacks have posed
serious challenges on how to implement threat detections in a scalable and accurate
manner. [38]

• Automation: Cybersecurity automation is closely linked to reaction speed, because
leveraging on it organizations deal with (and disarm) cyber threats before those threats
can disrupt their operations. Cybersecurity automation takes human-driven and
repeatable tasks that could be handled by the devices without human interaction and
automates that work. Put another way, cybersecurity automation streamlines manual and
time-consuming tasks into automated workflows, making network security processes more
efficient and less prone to human error. With enhanced efficiency, faster decisions can be
made, which also can improve an organization’s entire security posture. For example,
automation can monitor and scan networks for security loopholes and potential
vulnerabilities and generate reports that the security teams can use to assess the severity
of the issue and determine a solution to mitigate it, can monitor compliance states making
easy for organizations to identify and solve potential compliance problems, and, above all,
can automate the process for responding to security incidents. Automated incident
response systems use pre-planned and custom rules to respond to an incident, all without
human intervention. This can help organizations respond to incidents more quickly and
reduce the overall impact of a security incident. Other benefits of automated incident
response are optimized threat intelligence, streamlined operations, and automated
reporting and metrics capabilities [39]. The advantages of using automated cybersecurity
systems include:

o Increased efficiency. Cybersecurity automation allows for the rapid detection

and response to potential threats, reducing the time it takes to mitigate them.

o Improved accuracy. Automated systems can process massive amounts of
data and uncover patterns that may be difficult for humans to discover, leading
to fewer false positives or negatives.

o 24/7 monitoring. Automated systems can monitor networks and systems
continuously for potential threats, providing round-the-clock protection.

o Scalability. Automation can be used to scale security operations to satisfy the
requirements of organizations of all sizes, allowing for more effective security
management while keeping costs as low as possible.

The HORSE threat detector aims, as described below, to further enhance the level of
automation to automatically learn the characteristics of the network and its traffic
dynamically and continuously, improving, in this way, the overall performance and not
requiring dedicated parameter configurations by cybersecurity experts.

• Flexibility/Upgradability: Products based on machine learning are often promoted by
vendors as catch-all solutions to a broad array of cyberattacks. However, unbiased
experimental results have shown so far that ML algorithms may provide superior
performance when they focus on specific threats instead of trying to detect multiple threats
at once [40]. The other side of the coin is that specific detectors present some important
weaknesses:

o Slower detection in case of combined attacks, due to their limited visibility.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 75 of 77 © 2023-2025 HORSE

o In spite of the fact that ML based approach are theoretically preferrable on older
ones for their detection speed, in case of new form of attacks, zero-day, the
necessity to design, implement, train and tune new specific detectors makes in
these cases the specific detectors solutions unresponsive and ineffective.

Based on these considerations, a modern detector must be designed to be easily
upgradable and to be easily allocated in plug-and-play mode in a framework suitable
to accommodate further detection services over time according to the evolution of
Cybercrime techniques.
Furthermore, it must be provided with maximum visibility to be able to identify both
specific attacks and their combinations, as well as the maximum possible number of
new forms of attacks, zero-day.

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 76 of 77 © 2023-2025 HORSE

Appendix D. Threat detector innovative ML algorithm

Studying in detail the different impacts of various computations in the overall timing budget, it
has been demonstrated that the replacement of standard Machine Learning regressions (e.g.,
Linear, ARIMA, SARIMA etc.) with a weighted linear combination of concurrent regressions
working on the original time-series x(t), on its time-shifted versions x(t-nT), and on their
derivatives (i.e., interpolations of their residuals, defining residuals the differences among the
received and predicted values) is able to provide an important gain in terms of detection speed
[47].

Figure 43, from top to bottom, presents:

• Real data (orange), ARIMA forecasts (green [original time-series] and yellow [time shifted
time-series]

• ∆Tot Overall result of the overall linear combination (plus 200 to plot it)

• A warning-signal elaborated starting from ∆Tot (red) (plus 150 to plot it)

• Difference between regressions forecasts and real values (green and yellow) (plus 100 to
plot it)

• Derivative functions of difference series (green and yellow) (plus 50 to plot it)

Figure 42. Weighted linear combination of concurrent regressions [47].

Figure 43. Waveforms

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1)

 Page 77 of 77 © 2023-2025 HORSE

It is possible to appreciate the very low latency from the anomaly condition to the warning
signal in comparison to a standard regression applications, Figure 44.

Figure 44. Standard regression detection time.

