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Executive summary 

This deliverable is focused on the development of the modules that are part of the Platform 
Intelligence (PIL). These modules were described in Deliverable 2.2, where the functionalities 
of each one of these modules was analysed in the context of the HORSE architecture.  

These modules are: Sandboxing (SAN), where are located the Digital Twins (Prediction and 
Prevention and Impact Analysis) ready to test some scenarios over them; Early Modelling 
(EM), responsible of providing a preliminary assessment to the SAN by defining policies and 
rules; Distributed and Trustable AI Engine (DTE), which defines AI data collection, ensuring 
privacy and implementing productive measures; Policies and Data Governance (PAG), 
handling the data stored related to the HORSE platform by applying data policies; and Threat 
Detector and Mitigation Engine (DEME), developing algorithms focusing on network 
parameters, protocols headers and relevant data for the threat detection and mitigation. 

This document goes beyond the architecture of HORSE and details the process of deployment, 
installation, software development or any other technical related work of the modules included 
in the Platform Intelligence at IT-1. Therefore, further developments are expected to arise. 

These developments and the ones coming from the AI Secure and Trustable Orchestration 
(STO) module will serve to build a complete infrastructure ready to be integrated in the 
following months of the project. 

For this purpose of integration at this stage of the project Task Forces have been defined along 
with specific use cases to make the integration process smoother and with the final goal of 
having a final platform release with all components integrated. 
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1 Introduction 

This deliverable introduces the work done in the first iteration of the Work Package 3 
components, enclosed on the HORSE Platform Intelligence. As this deliverable is an OTHER 
type, the information included here is mostly related with software developments of the different 
modules at this stage of the project. 

The document is divided into five main sections, related with the five tasks of this Work 
Package: 

• Section 2: Sandboxing, linked to task 3.1. 
• Section 3: Early Modelling framework, linked to task 3.2. 

• Section 4: Distributed Trustable AI Engine, linked to task 3.3. 

• Section 5: Policies and Data Governance, linked to task 3.4. 

• Section 6: Threat Detector and Mitigation Engine, linked to task 3.5. 

Section 2 describes the developments made on the Sandbox (SAN), which includes two 
submodules based on Digital Twins (DT): the Prediction and Prevention DT and the Impact 
Analysis DT. Those Digital Twins will work together to build a suitable Sandbox to predict and 
test the modules and topologies of the project. 

Section 3 is related to the Early Modelling (EM) component, which is the module in charge of 
providing the information to the Sandbox. The Early Modelling module includes two blocks: the 
Taxonomy, which characterize and profile the different components; and the Attributes, which 
define the strategy used to characterize the modules based on the attributes considered. 

Section 4 describes the Distributable AI Engine (DTE), module that collects data from various 
sources and employs AI and machine learning modules to define optimal security policies while 
preserving privacy. Also, the DTE module takes on data management responsibilities, 
including pre-training data processing. 

Section 5 analyses the Policies and Data Governance (PAG) module serves as the 
comprehensive hub for ensuring data quality, privacy, integrity, and user-friendly access. It 
facilitates the flow of data while upholding essential legal and ethical data management 
principles. 

Finally, section 6 provides the development of the Threat Detection and Mitigation Engine 
(DEME) module, which handles the intricate analysis and processing of network data streams 
in highly complex and distributed network and infrastructure environments. The algorithms 
developed will offer an in-depth examination of network parameters, protocol headers, and the 
extensive data collected from network equipment, devices, and Virtual Network Functions 
(VNFs). 
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2 Development of the Sandboxing 

The Sandboxing component (SAN) of the HORSE architecture will be used to perform 
predictions, analyse prevention strategies, and perform impact analysis of different intents and 
scenarios. 

The availability of such a Sandboxing module will allow the HORSE architecture to perform 
experiments of the Digital Twin of the 6G network, continuously synchronized with the Physical 
infrastructure of the 6G network and its services. Those experiments are related with 
cybersecurity threats, like DDoS attack or API vulnerabilities. For more information, check 
Appendix A. 

The first release of the component will focus on how to implement the Digital Twins and how 
to enable the HORSE architecture to interact with them. For this purpose, both Digital Twins 
detailed in this section will provide REST APIs and use YAML/XML files for their configuration 
and information exchange. 

Synchronization between the Physical 6G networking architecture and the Digital Twin will be 
at this stage performed through a configuration file. 

2.1 Impact Analysis Digital Twin 

The Impact Analysis Digital Twin is responsible for emulating a real network ready to deploy 
and test the necessary attacks and provide some outputs that can help to take the 
corresponding decisions on the real network. 

2.1.1 Tools 

To build the Impact Analysis Digital Twin, a variety of tools will be used in the project which 
are detailed on the following sections. 

 

Kubernetes 

Kubernetes [1] is a powerful open-source container orchestration platform designed to 
automate the deployment, scaling, and management of containerized applications. It leverages 
container technology (commonly Docker) to encapsulate applications and their dependencies 
into isolated units. Containers enable consistent deployment and execution across different 
computing environments. Regarding the orchestration, Kubernetes simplifies the management 
of containerized applications by automating tasks such as deployment, scaling, and load 
balancing. It abstracts the underlying infrastructure, making it easier to deploy and scale 
applications consistently across various environments. 

 

Kubernetes Network Emulator 

The Impact Analysis Digital Twin is based on KNE: Kubernetes Network Emulator. KNE [2] is 
an Open-Source tool by OpenConfig that allows the deployment of network topologies on 
Kubernetes pods. For this, KNE emulates images of existing routers, as Cisco, Arista, etcetera. 

 

VR Network Lab 
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VRNetLab [3] is an open-source project that provides a platform for running and testing virtual 
routers in a virtualized environment. VRNetLab leverages Docker containers for the 
deployment of virtual routers by providing a lightweight and efficient way to create, deploy, and 
manage virtualized applications, including networking devices. 

 

Emulated Virtual Environment for Network Graphing 

EVE-NG [4] is a network emulation software that provides a platform for designing, testing, 
and training network scenarios. The tool enables the emulation of complex network topologies 
in a virtual environment. Users can design and test network configurations without the need 
for physical hardware. It supports a variety of networking vendors, including Cisco, Arista, and 
others. This allows users to emulate devices from different manufacturers in the same 
topology. 

 

Security Orchestration 

BASTIÓN is a policy-based security orchestrator that allows orchestrating and enforcing 
security policies, considering multiple orchestration algorithms in both, proactive and reactive 
ways. Security orchestration policies can model different security requirements with different 
levels of abstraction. Thus, policy models are refined/translated during the orchestration 
process depending on the abstraction level received. To this aim, the orchestrator implements 
plugins and drivers that handle policies translation and enforcement. On the one hand, a plugin 
is a software component that implements the logic for translating security policies to specific 
technologies. For instance, a plugin could translate security policies derived from what-if 
scenarios into specific configurations/actions to be applied in the DT (K8s, KNE). On the other 
hand, a driver is a software component that implements the logic for enforcing 
configuration/actions across different kind of technologies. For instance, enforcing specific 
configurations/actions in the DT such as deploying, configuring, and executing a specific attack 
(e.g., DDoS from Pods) as well as enforcing specific countermeasures using concrete 
available technologies (e.g., Filter traffic in specific routers). 

Finally, the orchestrator is composed of different modules: 

• Orchestration Service: This module provides the entry point for orchestrating and 
enforcing security policies. Specifically, it implements different classes that have REST 
API endpoints that allow enforcing different kinds of security policies. This component is 
crucial in the NDT context since it makes sure that the security policies needed to analyse 
different what-if scenarios are applied. 

• Allocation Manager: It implements the calculation of the orchestration and enforcement 
plans according to the selected allocation type and allocation algorithms. This selection is 
performed as the first step according to the available features. For instance, if the 
infrastructure is NFV-enabled, an NFV-enabled allocation type can be selected. 
Otherwise, conf-only allocation will be selected. Besides, each allocation type considers 
several allocation algorithms. 

• Policies Manager: This module implements different managers that allow managing 
different policy models. This component will be very useful because it will help to digest 
the different types of policies that will be received. Since this module will receive 
information from a variety of components, including Early Modelling, Pre-processing, and 
Intent-based interface, managing these different inputs will facilitate the deployment of the 
NDT. Plugins are also part of this module. 
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• NFV-MANOs manager: It implements common methods and functions that allow requests 
for NFV operations independently of the underlying (and available) NFV-MANOs. For 
instance, operations like deploy, configure, and remove. 

• Assets/Enablers Manager: It implements a set of drivers that allow the Security 
Orchestrator to configure Assets/Enablers (using the results of the policy translation). 

• Data Service Manager: It implements a data services client that allows access to data 
services in a common way. The specific data service driver is provided by auto-generated 
code using OpenAPI tools. 

• Enforcement Manager: It implements the way that the enforcement plan is applied. 
Different enforcement managers can be developed by including an “enforce” method. 

 

Telemetry 

In order to make an assessment of the security policies applied to the infrastructure, gathering 
and analysing telemetry data is needed. Telemetry data will be composed of metrics of the 
network, logs from its components, and traces from the different applications. A variety of tools 
have been considered in order to fulfil this process: 

• Prometheus [5] is an open-source system monitoring and alerting toolkit. It is mainly used 
for gathering metrics and events for different networking systems. Thanks to Prometheus, 
the process of data analysis and the understanding of the performance of the system is 
facilitated. Prometheus is also known for its scalability and flexibility since it has good 
integration with containers and cloud services. It will be used to store metrics and will be 
integrated with the Alertmanager to alert, and it will notify administrators in case of the 
detection of abnormal values. 

• OTEL (OpenTelemetry) [6] is an observability framework and toolkit designed to create 
and manage telemetry data such as traces, metrics, and logs. OpenTelemetry is vendor- 
and tool-agnostic, meaning that it can be used with a broad variety of observability  
backends. It is the unification of two other projects that provide knowledge and expertise 
in this field. OpenTelemetry will help to comply with industry standards as well as make a 
cleaner monitoring pipeline. 

• Node Exporter [7] is a component of the Prometheus ecosystem. It is a metric gatherer for 
Unix systems and is designed to get information about the hardware and the operating 
system. Node Exporter can gather a variety of metrics, like the use of CPU, memory, 
network, storage, etc. In addition, Node Exporter has great integration with Prometheus. 
Using Node Exporter, the assessment required for the what-if scenarios will be done by 
measuring the different metrics for the hardware and the operating system. 

• KSM (kube-state-metrics) [8]: this tool helps to get information about the state of the 
Kubernetes cluster. This component does that using the Kubernetes API and has good 
integration with the rest of the components since it can send the metrics in a Prometheus 
format. KSM helps with the monitoring of Kubernetes clusters and gathers information 
regarding health and performance. The same way Node Exporter will be used for the 
assessment, KSM will help with information about the cluster. 

• Alertmanager [9] is another component of the Prometheus ecosystem and takes care of 
managing alerts generated from Prometheus and sending notifications based on 
predefined rules. 
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2.1.2 Deployment 

Once the topology is created in the EVE-NG, it is adapted to a format readable by KNE by 
executing a script that translate the information to one format to another. An example of a 
topology generated in EVE-NG is described in Figure 1. 

 

Figure 1. Topology created with EVE-NG. 

 

And the corresponding topology descriptor transformed, that is consumed by KNE to deploy 
the nodes with its correspondent links: 

 

name: horse-example 

nodes: 

- name: ceos1 

  model: ceos 

  os: eos 

  vendor: ARISTA 

  config: 

    config_path: /mnt/flash 

    config_file: startup-config 

    file: r1-config 

  interfaces: 

    eth1: 

      name: Ethernet1 

    eth2: 

      name: Ethernet2 

    eth3: 

      name: Ethernet3 
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- name: ceos2 

  model: ceos 

  os: eos 

  vendor: ARISTA 

  config: 

    config_path: /mnt/flash 

    config_file: startup-config 

    file: r2-config 

  interfaces: 

    eth1: 

      name: Ethernet1 

    eth2: 

      name: Ethernet2 

- name: server 

  vendor: HOST 

  config: 

    config_path: /home/cognet 

    config_file: server-config.py 

    file: /configuracion/server-config.py 

    image: alpine:latest 

  interfaces: 

    eth1: 

      name: Ethernet1 

- name: client-1 

  vendor: HOST 

  config: 

    config_path: /home/cognet 

    config_file: client-1-config.py 

    file: /configuracion/client-1-config.py 

    image: alpine:latest 

  interfaces: 

    eth1: 

      name: Ethernet1 
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- name: client-2 

  vendor: HOST 

  config: 

    config_path: /home/cognet 

    config_file: client-2-config.py 

    file: /configuracion/client-2-config.py 

    image: alpine:latest 

  interfaces: 

    eth1: 

      name: Ethernet1 

links: 

- a_node: ceos2 

  a_int: eth1 

  z_node: ceos1 

  z_int: eth3 

- a_node: server 

  a_int: eth1 

  z_node: ceos2 

  z_int: eth2 

- a_node: client-1 

  a_int: eth1 

  z_node: ceos1 

  z_int: eth1 

- a_node: client-2 

  a_int: eth1 

  z_node: ceos1 

  z_int: eth2 

 

With this configuration file, it is feasible to deploy the scenario over the KNE by executing some 
commands. Once the pods have been created, we have to set on them the network 
configuration with the IP addresses, routes, etc. 

On a first deployment of the Impact Analysis Digital Twin, there will be 10 clients, a gNodeB a 
transport network made up of four routers, a 5G core and a DNS server. All these elements 
will be needed to emulate some attacks over it. 
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2.2 Prediction and Prevention Digital Twin 

The Prediction and Prevention Digital Twin is built on the Comnetsemu network emulation 
software [10], [11]. Comnetsemu is based on the well-known mininet network emulator [12], 
with the integration of a docker-in-docker environment to enable the deployment of services 
as docker containers. In this way, it is possible to emulate a 5G SA or NSA architecture by 
exploiting the available open-source implementations of the 5G core and access networks. 

All employed software, including Comnetsemu, is publicly available and open source. 

Mininet is a well-recognized Software Defined Networking network emulator. It is characterized 
by a stable and realistic performance, as demonstrated in [13], as well as some limitations in 
extremely large emulation scenarios [14]. Comnetsemu builds up on top of such realistic 
network emulation to enable to deploy actual service containers, thus generating a realistic 
workload and enabling to build realistic scenarios for current and next-generation networks.  

Prediction and Prevention Digital Twin includes the following modules: 

• Digital Twin Modelling module: it is responsible for generating the DT based on the input 
data (traffic and topology information, orchestrated services, etc.) 

• Digital Twin Engine module: it will run the DT in the Comnetsemu emulation environment. 

• Digital Twin-based Prediction module: it will analyze the output of the DT Engine block 
using AI/ML algorithms to perform predictions and identify anomalies. 

• I/O Interface module: interface with DTE / IBI for receiving requests and providing the 
related outcomes. 

 

 

Figure 2. The structure of the Prediction and Prevention Digital Twin (from HORSE D2.2). 

 

The Prediction and Prevention Digital Twin is available to the HORSE platform as a Virtual 
Machine. Deployment of the VM is performed through Vagrant. 

All modules are developed in Python. The following sections describe how the internal modules 
are developed. 
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Digital Twin Modelling module 

This module generates the script for replicating the Physical Twin of the 6G network into the 
Digital Twin.  

This module receives in input via REST APIs a YAML descriptor of the network topology and 
the known services running in the network. The format for data collection is common for the 
entire HORSE sandbox, and it is the same as for the Impact Analysis Digital Twin. An example 
of the format of the file is as described in Section 2.1.2. Based on such information, it generates 
a script file to build the network and services in the Comnetsemu environment and to run the 
Digital Twin in the sandbox. 

The following represents an example of a script for deploying a simple topology in mininet or 
Comnetsemu: 

from mininet.topo import Topo 

 

class MyFirstTopo( Topo ): 

    "Simple topology example." 

    def __init__( self ): 

        "Create custom topo." 

        # Initialize topology 

        Topo.__init__( self ) 

        # Add hosts and switches 

        h1 = self.addHost( 'h1' ) 

        h2 = self.addHost( 'h2' ) 

        h3 = self.addHost( 'h3' ) 

        h4 = self.addHost( 'h4' ) 

        leftSwitch = self.addSwitch( 's1' ) 

        rightSwitch = self.addSwitch( 's2' ) 

        # Add links 

        self.addLink( h1, leftSwitch ) 

        self.addLink( h2, leftSwitch ) 

        self.addLink( leftSwitch, rightSwitch ) 

        self.addLink( rightSwitch, h3 ) 

        self.addLink( rightSwitch, h4 ) 

 

topos = { 'myfirsttopo': ( lambda: MyFirstTopo() ) } 

 

The module receives in input via REST APIs also a YAML/XML descriptor of the attack or 
scenario to evaluate. This will be translated in a set of commands to deploy additional 
components in the Digital Twin and run/replicate network traffic. 
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Digital Twin Engine module 

This module implements the Digital Twin. The Digital Twin is built in the Comnetsemu 
environment, enabling a precise emulation of an SDN network and faithful replication of 
services by deploying them in docker containers. 

As an example, the following figure represents how a simple 5G network with Mobile Edge 
technology can be replicated in form of a Digital Twin in Comnetsemu. 

 

 

Figure 3. A block diagram on the deployment of 5G in Comnetsemu 

 

Digital Twin-based Prediction module 

This module is aimed at predicting relevant scenarios in order to signal potential treats or other 
performance degradations to the HORSE architecture. In the first implementation, it will be 
able to detect traffic peaks and potential congestion as well as some types of security attacks. 

 

I/O Interface module 

The Digital Twin offers a REST API for interaction with the other modules of the HORSE 
architecture, as well as for most of the interactions among its internal modules. A Swagger 
interface is provided to enable fast and efficient testing of the proper operation of all offered 
functionalities. 

The REST APIs are developed using Python FastAPI framework. The exposed ports will be 
configurable through a proper “config.ini” file in the software distribution. 
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3 Development of the Early Modeling framework 

The early modelling is designed to feed the Sandboxing module with all the required 
information to successfully perform. It consists of two main components: Taxonomy and 
Attributes. Taxonomy is responsible for characterizing and profiling the different threats and 
attacks to be considered in the 6G context within the DT. Attributes define the strategy and set 
of attributes to characterize the impact of the attack in the 6G components, as well as the 
impact of the mitigation and preventive strategies in the 6G components. Figure 1 shows the 
structure of the Early Modelling module. 

 

 

Figure 4. Early Modelling components. 

3.1 Taxonomy component 

The main objective of the taxonomy component is to define a model for characterizing and 
profiling the different threats and attacks to be considered in the 6G context within the DT. 

In the threat modelling process, the first step is to identify the vulnerabilities in the system/ 
network/application to exploit the resources and disrupt the services. Figure 5 presents the 
proposed meta-model consisting of all the aforementioned elements. 

Attacks can be characterized by the meta-model consisting of the following elements. 

• Threat actor 

• Vulnerability 

• Threat 

• Cyber Attack 

• Control action 

• Information on organization Assets 
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Figure 5. Threat model. 

 

Vulnerability: Vulnerability defines the loophole in a system or vulnerable spot that can be 

targeted by the adversary.  The meta-model makes use of an attack surface to clearly describe 

the vulnerability. This attack surface includes information on user equipment, network 

information, and services that can be targeted. While defining the vulnerability in an 

application/network/user process, there is a need to mention the other properties associated 

with vulnerabilities such as source, destination, and timestamp. 

Organization Assets: Organization assets include the information of assets and other devices 
that threat actors want to exploit. The proposed threat modelling processes consider the 
criticality of each asset on a Likert scale. This would help us in defining and scaling the critical 
assets and devices for the organization. 

Threat Actor: A threat Actor is categorized as a malicious actor who has some motivation 
towards using a system. Including the intention of the threat actor as he wants to steal some 
information or want to disturb the services or applications provided by the network. The 
proposed meta model defines the scope of adversary groups for threat actors by categorizing 
it as internal or external to the system and skill set on a Likert scale. 

TTP: TTP is used by the attacker to obtain its operation by including the tactics, techniques, 
and procedures. TTP can be useful for gathering the cyber threat information related to attack 
pattern, deployed resources and exploit information. 

• Tactics: it defines the goal of the attacker. 

• Technique: it includes the software tools and techniques that can be used by the attacker 
to perform attack.  

• Procedure: It includes the set of tactics and techniques to put together to make the 
procedure. Basically, it includes the step-by-step procedure on how to launch the attack. 

Threat: Threats include harmful action facilitated by vulnerability. It can be any weakness from 
the ENISA threat report, use case activities, adversarial behaviour, and observable patterns. 

Cyber Attack: it is a harmful action conducted by the threat actor by exploiting the vulnerability 
of the system. The following attributes are associated with the cyber-attack. 

• The pattern of the attack: it can be malware, spyware, or injection. 
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• Pre-requisite: information available on vulnerability. 

• Attack vector: include the whole mechanism to deploy the attack. 

Control Action: Control action includes the course of action and countermeasures associated 
with an attack. This includes preventive measures, mitigation, and corrective measures. 

• Preventive measure:  policies implemented on the occurrence of a particular event (risk) 
probability, that are intended to prevent the appropriate actions violating the policies or 
link with the violation or risk associated with the third party. 

• Mitigation: Define the mitigation action post-attack occurrence 

• Corrective: Define the course of action and risk management related to 6G technology, 
designed to react to the detection of an incident to reduce or eliminate the opportunity for 
the unwanted event to recur 

Table 1 presents describes all the elements in the meta model, as well as its type and scope 
in the HORSE architecture. 

 

Table 1. Threat meta model elements. 

Elements Attributes Description Type Sources from 
where 

Organization 
Assets Id (attribute) Unique Identif ier String 

SM, Pre-
processing, 

PAG 

 Type Identif ier of  organization Assets String 

 Criticality 

Desired level of  security for use 
case, based on a Likert scale, 5 

levels. 
Integer 

Threat Actor ID Unique Identif ier String 

MITRE and 5G 

Telco network 

  

 Adversary 
Group 

Def ine the adversary group 

(internal/External) String 

 Skill 

The specif ied level of  skill, based 
on a Likert scale, 5 levels 

(Knowledgeable-no-knowledge) 
Integer 

 Technique 

Techniques used by the threat 

actor (e.g. Network Scanning 

Technique) 
String 

 Required 

Resources 

Used of  s/w to Identify which 
service is vulnerable and can be 

targeted 
String 

 Motivation 
Def ine the motivation of  the 

threatActor using a system String 

 Intension What threat actor wants to steal  String 
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 Campaign 

Need to def ine the threat actor 
based on the capability, such as 

their intent, type of  password  
 used, observed patterns, 

behaviour, history, and motives 

String 

TTP Tactics 
Def ine the goal of  the attacker 

(e.g. tactics can be impact) String 

MITRE, 5G 

Telco network 
and 

DEME 

 Technique 
What tool or technique was used 

by the attacker (e.g. IP spoof ing) String 

 Procedure 
Def ine step-by-step procedure 

on how to launch the attack String 

Cyber Attack Type 

Def ine type of  attack that could 
be launched in Horse (e.g. DNS 

amplif ication) 
String 

SAN, DEME 

 Pattern 

Def ine behaviour or pattern of  
attack such as Spyware, 

malware, injection 
String 

 Pre-requisite 

Connect or reference the 

Information available on 

vulnerability 
String 

 Vector 
Threat vectors def ine the whole 

Mechanism to deploy the attack  String 

 ATT&CK 
Describe the ID and type 

available on MITRE String MITRE 

Threat ID Identif ier of  link  String 

Use-cases 

 Name 
Def ine a threat which is 

facilitated by vulnerability String 

 Pattern 

To identify weaknesses patterns 

can be (1: State of  the art, 2: 
ENISA report, 3: Adversary 

Behaviour, 4: use-case threat 

activities, 5: specif ic observable 

pattern) 

String 

Vulnerability 
Attack 

Surface (User 
Equipment) 

Def ine the User equipment (e.g. 
Malicious Bot (CCTV, HoLoLens 

headset etc.)) 
String 

SM 

 
Attack 

Surface 

(Network) 

Def ine Network (e.g. RAN, CN 
(core network), EN (Edge 

network) 
String 
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Attack 

Surface 
(Services) 

Def ine 5G/6G Services (e.g. 
Cloud, Roaming, third party, 

third-party) 
String 

 Source 

Def ine the sources of  
vulnerability (S/W, network, 

website, user process, 
application, conf iguration, or 

third-party vendor) 

String 

 Destination Target of  vulnerability String  

 Timestamp   date time 

Estimated 

Impact 
Performance 

Parameter 
Def ine the performance 

parameter.  
String 

  

SAN 

 System 
services 

Def ine 5G/6G services (e.g. 

Roaming, Multi-media, cloud , 
third party) 

String 

 System 
Components 

Def ine 5G/6G Components (e.g. 
RAN core convergence, Core-
network, edge network, user, 

terminals etc. 

String 

Real Impact 
Attack 

Propagation 

Def ine the attack propagation 

and cascading ef fect link with 
threat actor penetration, 

manipulation and severity of  an 

attack 

XML 

element 

Control Action Preventive 

Def ine policies implemented on 

the occurrence of  a particular 
event (risk) probability, that are 

intended to prevent the 

appropriate actions violating the 
policies or link with the violation 
or risk associated with the third 

party. 

XML 

element  

PAG, RTR 

 Mitigation 
Def ine the mitigation action post 

attack occurrence 
XML 

element  

 Corrective 

Def ine the course of  action and 

risk management related to 6G 
technology, designed to react to 

the detection of  an incident to 

reduce or eliminate the 
opportunity for the unwanted 

event to recur. 

XML 
element  

 

3.2 Threat meta model XML Schema 

An XML schema has been defined for the meta-model to enable the representation of threats. 

This XML schema consists of the root element threatModel, which consists of a sequence of 
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intermediate elements threatModelElement. The threatModelElement has an ID to uniquely 

define each model element and a sequence consisting of all the elements in the Meta model, 

as shown in Figure 6. 

 

Figure 6. Threat model XML schema. 

 

Figures 7 to 12 show the XML representation for all the elements in the threat meta model. 

 

 

Figure 8. Vulnerability element. 

 

Figure 9. OrganizationAsset element. 
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Figure 7. ThreatActor element.                   

 

Figure 10. Threat element. 

 

 

 

Figure 11. CyberAttack element. 
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Figure 12. ControlAction element. 

3.2.1 DDoS DNS amplification  

To see how our model fits a specific attack, we are taking one such type of DDOS attack 
named as DNS amplification attack presented below. In our XML schema, the CyberAttack 
element contains all the attributes of the cyber-attack as mentioned above along with two child 
elements as “Estimated Impact of attack” and “real impact of attack”. 

DNS amplification attacks can be triggered in two ways; i) DNS server and ii) NTP (network 
time protocol). In the example presented below, we are considering the case in which a DNS 
server overwhelms the resources for a single generated query. To launch this type of attack, 
the attacker makes use of botnets using spoofed IP addresses. As in Figure 8, we can see 
one attribute named “ATT & CK”.  

By using the attributes of CyberAttack, we can map this information with adversarial tactics, 
techniques, and common knowledge. For this purpose, we only need to add the ID and type 
details to connect it with MITRE. We can add the MITRE information here as ID=” T1498.002” 
and type “Network Denial of Service: Reflection Amplification” respectively. 

 

Mitigation and Preventive Strategy 

To take preventive and mitigation measures, we have defined the “ControlAction” element. It 
includes information on proactive and preventive action when facing a threat. To take the 
appropriate action we need to provide the type and condition of action that could be used as a 
measure against the threat. In the example mentioned below (Figure 10), we are considering 
the DNS reflection-amplification attack on a 5G network. For the specific attack, the type and 
ID mentioned on MITRE is mapped with the schema element. 

 

Mitigation against DNS reflection- amplification attack 

Mitigation information can be mapped with the control action element which intercept the 
incoming network upstream to filter out the legitimate traffic from the attack traffic by utilizing 
the information of action and condition available. The defence against this attack can be offered 
by ISP (internet service provider), 3rd parties like CDN (content delivery network), or 
companies having specialization in the mitigation of DDoS attacks. Depending on the volume 
of the flood we can make use of “filtering by blocking the source addresses” sourcing the 
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attack, blocking the ports that are being targeted, and blocking the protocol being used for 
transport. 

 

 

Figure 13. DDoS DNS amplification attack XML sample. 
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4 Development of the Distributed Trustable AI Engine 

4.1 Introduction 

The distributed trustable AI Engine (DTE) module is responsible for the collection of various 
data from diverse sources of the HORSE infrastructure and the employment of AI/ML modules 
in order to define the optimum set of policies to ensure a high level of security against a wide 
range of attacks and impose privacy rules. DTE provides a programming interface to serve AI 
models and predictions to other modules, thus supporting distributed trustable AI-assisted 
cybersecurity tools. Moreover, DTE performs data management prior to the actual training, by 
employing the appropriate policies for anomaly detection (tampered data), as well as data 
anonymisation. In addition, DTE guarantees compliance of the proposed solutions with the 
policies module. 

Regarding its interaction with other HORSE modules, the DTE receives inputs from the 
detection and mitigation engine (DEME) in the form of advices, for different types of attacks in 
the network. In this context, and for predefined known attacks, the information that is forwarded 
to the DTE includes the id of the HORSE node under attack, and the identified attack type or 
combination of attack types with a predefined confidence percentage. The advices from the 
DEME are sent using REST HTTP requests to the DTE. In the same context, DTE can also 
receive data in the form of policies from PAG, via REST APIs.  

In the next step, mitigation measures and methodologies from well-established knowledge 
bases, such as the MITRE ATT&CK are exploited from both the DEME and DTE in order to 
build the appropriate mitigation intents. Towards, this end, the output of the DTE is send via 
REST API to the IBI. It should be noted at this point that the communication among all internal 
APIs will be based on the JSON format. Moreover, a GUI will be made available for the dynamic 
retraining of modules if necessary, according to the results of the ML model evaluator that will 
be described below. 

4.2 Internal modules of the DTE 

The internal parts of the DTE can be shown in the Figure below and include the NWDAF 
aggregator, the data processing module, the ML model training, the ML model evaluator, the 
ML model repository, as well as the intent creator. 

 

Figure 14. The internal components of the DTE. 
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If multiple NWDAF instances are deployed, as in the case of HORSE where different instances 
correspond to different network areas, an NWDAF can act as an aggregation point (i.e. 
Aggregator NWDAF) and collect analytics information from other NWDAFs, which may have 
different Serving Areas, to produce the aggregated analytics [15]. 

The data processing module receives direct inputs from the DEME in the form of node ID, 
attack type (or combination of attack types) per node, confidence interval, proposed mitigation 
action and transforms them to a format that can be accessible by the ML training modules.  

The ML training is the main module of the DTE where various models are trained for different 
types of attacks. These will include supervised, unsupervised, and deep reinforcement learning 
approaches [16]. For this purpose, various datasets will be exploited, representing diverse 
attacks and network topologies. These datasets are provided i) from HORSE partners, ii) from 
the NKUA Open5GS and UERANSIM-based testbed, being able to replicate 5G core network 
attacks, as well as attacks on the 5G RAN, and iii) open datasets that have been used from 
relevant works on 5G attack scenarios.  

At this stage, four different datasets from the literature have been analysed together with ML 
model training and evaluation: 

• The first one is a synthetic 5G cellular network data for NWDAF [17], that is based on 
Open5GS and UERANSIM. In this context, a topology with a fixed number of subscribers 
and cells with different traffic patterns and anomalies has been considered, where the 
anomaly is defined as an unexpectedly high network traffic compared to the average 
network traffic, fading and stabilizing in time.  

• The second dataset is the 5GAD-2022 5G attack detection dataset [18], that is based on 
Free5GC and UERANSIM. In this case, two types of intercepted network packets are 
included: "normal" network traffic packets and "attack" packets from attacks against a 5G 
Core implemented with free5GC. The captures were collected using Tshark or Wireshark 
on 4 network interfaces (N2, N3, N4, N6) (AMF, gNB, UPF, SMF, DN) within the 5G core. 
10 attacks were implemented, mainly relying on REST API calls to different parts of  the 
core.  

• The third dataset [19] was generated on an Open5GS and UERANSIM-based testbed. 
Here, an SMF instance networked in parallel to the original network function acts as the 
attacker’s entry point to the virtualised infrastructure and targets the N4 interface between 
the SMF and the UPF. The hijacked SMF executes the cyberattacks against the UPF. In 
order to obtain this data set, the network traffic data of each entity/device was captured 
through Tshark for each network function and radio element.  

• The fourth data set, titled 5G Network Intrusion Detection Dataset (NIDD) [20] contains 
data in both packet-based format as well as in flow-based formats. 5G-NIDD is generated 
using the 5G Test Network (5GTN) in Oulu, Finland, thus providing a close resemblance 
to a real network scenario. 5G-NIDD presents a combination of attack traffic and benign 
traffic under different attack scenarios, falling into the Distributed Denial of Service (DDoS) 
and Port Scan/Reconnaissance categories.  

For these datasets, various ML models have been evaluated by the ML model evaluator 
module for predefined ML metrics, such as accuracy and F1-score. It should be noted that 
apart from evaluating the anomaly detection performance of different ML models, e.g. support 
vector machine (SVM) with binary kernel for the N4 interface attacks, these attacks have 
already been replicated at the NKUA testbed and data are collected, as well as logs from 
various NFs, i.e. AMF, SMF and UPF. After the initial ML model evaluation phase is over, two 
distinct actions can take place: i) retraining of the ML model in case its performance is below 
the desired level, or ii) storage of the model in the ML repository, for retrieval in future potential 
attacks. 
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Figure 15. The FLOWER concept in DTE. 

4.3 Future extensions 

In the next release of the DTE, federated learning (FL) will be also applied, where each 
NWDAF instance will be responsible for data collection and aggregation in a distinct set of 
mobile nodes, as shown in the Figure above. In this case, there are multiple DTE instances 
per subgroup of nodes, where each one trains locally the corresponding models with the 
available datasets. Afterwards, the master DTE model with the NWDAF aggregator is 
responsible for updating the global parameters and informing the individual nodes for their 
updated values. For this purpose, the FLOWER concept will be applied, that can train multiple 
nodes in an FL fashion [21]. 

4.4 APIs 

Table 2. DEME APIs. 

Nº API Comments Inputs Outputs 

1 
[action,data] = 

getRealContext() 

This API retrieves data directly 
from the threat detector and 

mitigation engine (DEME) 

- 

This API has two 
outputs: data 

coming directly 
from the DEME that 

can be in the form 
of time series and 

the appropriate 
action as it has 
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been defined by the 
DEME 

2 
[action,data] = 
getEmulatedCont
ext() 

Same as before but now data 
are fed directly from the 
emulated context 

- 

Same as the 
previous API 
regarding real 
context. 

3 
policy = 
getpolicy() 

This API retrieves the set of 
policies in HORSE directly from 
the policies and data 
governance (PAG) 

- 

The set of policies 
of HORSE that are 
fed to the DTE to 
ensure compliance 
during ML model 
training 

4 
pr_data=data_pr

ocess(data) 

API that is used for proper 
data manipulation that are 
received from real or emulated 
context 

This processing might include 
proper format transformation, 

missing values replacement, 
data normalization, etc. The 
output is a similar data matrix 
as the input one, where the 
processed values are stored. 

Data from 
real or 

emulated 
context 

Processed data 

ready for ML 
training 

5 

model_predictor 

= 
train_model(pr_

data,train_meth
od) 

This API is used to train the 
DTE models based on the 
ingested data after the 

data_process API output.  
It typically accepts a dataset or 

data parameters required for 
model training.  

The API triggers the training 
process and updates the DTE 
models accordingly.  

The 
processed 

data 
along 

with the 

desired 
training 
method 

The output 
model_predictor is 

the trained model 
that can be either in 

the form of a 
function or a 

structure. 

6 

ML_KPIs = 
evaluate_model(

model_predictor, 
test_data 

This API is used to evaluate the 
performance of the trained 

models.  
It accepts a dataset or data 

samples and returns the 
evaluation results, such as 

precision, recall, F1-score, 
mean square error (MSE) or 
other relevant metrics, 
indicating how well the models 
are performing. Typically, 
test_data can be a subset of 

Test data 

along 
with 

model 
predictor 

A list of KPIs in the 

form of a table to 
evaluate the 

accuracy of the 
trained model 
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the pr_data that can be used 
for evaluation purposes. 

7 

intent = 

generate_intent(
data) 

This API generates an intent to 
be passed to the Intent-Based 
Interface (IBI) 

 
An intent in the 

form of an action 

4.5 Machine Learning Function Orchestrator (MLFO) 

The Machine Learning Function Orchestrator (MLFO) is a framework comprising various 
components designed to provide advanced functionalities for training machine learning 
models. Leveraging state-of-the-art libraries such as scikit-learn, Keras, and TensorFlow, 
MLFO facilitates the training and retraining of models. The orchestrated workflows trigger the 
execution of both Machine Learning (ML) and Deep Learning (DL) experiments, harnessing 
the power of cloud-native infrastructure. MLFO integrates three key components to ensure 
seamless functionality: 

• Data Science Platform Component: This element of MLFO is dedicated to supporting 
the data science process, offering a robust environment for data exploration, feature 
engineering, and model development. It provides a user-friendly interface and tools that 
streamline the data science workflow. 

• Workflow Orchestrator: At the core of MLFO, the Workflow Orchestrator coordinates 
and manages the entire machine learning pipeline. It oversees the training and retraining 
processes, ensuring efficient communication between different stages of model 
development. This component plays a crucial role in optimizing the orchestration of tasks 
to enhance overall system performance. 

• Models Registry: MLFO incorporates a Models Registry that serves as a centralized 
repository for storing and versioning training artifacts. This includes metrics and models 
generated during the training process. The Registry ensures traceability and 
reproducibility by maintaining a comprehensive record of model versions and associated 
performance metrics. 

 
 

 

Figure 16. MLFO Architecture. 
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Table 3 below depicts the list of components comprising MLFO, providing their name, short 
description and key technologies used in their technical implementation. 

 

Table 3. MLFO Comonents. 

Component Name Short Description Technologies 

Data Science Platform 
Scientific Environment for 
training ML / DL experiments 

scikit-learn, keras, 
Tensorflow, pandas, numpy, 
matplotlib, seaborn, SHAP, 
docker, K8S, Jupyter 

Workflow Orchestrator 
Orchestrate the execution of 
ML / DL experiments as K8S 
objects 

Prefect, MinIO, Postgress, 
docker, K8S 

Model Registry 
Provide storage 
functionalities for training 
models and artifacts 

MLFlow, Postgress, MinIO 

 

4.6 Explainability of ML / DL Experiments 

The Distributed Trustable Engine goes beyond model training by incorporating the crucial 
element of explainability for Machine Learning (ML) and Deep Learning (DL) experiments. 
Post-training, the Machine Learning Function Orchestrator (MLFO) utilises training artifacts to 
execute explainability methods, providing insights into the inner workings of models. This 
process is essential for assessing the performance and trustworthiness of models within the 
target cloud-native environment. MLFO, equipped with the installed and configured SHAP 
library, is poised to deliver robust explainability capabilities. Furthermore, it is designed to be 
adaptable, allowing seamless extension to support other eXplainable AI (xAI) libraries such as 
LIME, omniXAI, and ELi5. This flexibility ensures that MLFO remains at the forefront of 
explainability methodologies, accommodating diverse and evolving approaches to interpreting 
and understanding machine learning models. 

In the case of the 5GNID dataset [22] employed for training machine learning (ML) and deep 
learning (DL) models aimed at discerning between normal and abnormal packets, with a 
specific focus on identifying the nature of abnormalities such as various types of cyber-attacks, 
the assessment of explainability plays a pivotal role in evaluating experimental outcomes. This 
involves elucidating how input features influence the classification output. To illustrate this 
concept, consider the diagram below, which delineates the impact of the "Attack Tool" feature 
on the ultimate classification decision output. This visual representation serves as a succinct 
depiction of how this particular input feature contributes to the determination of whether a 
packet is associated with a normal pattern or indicative of a specific type of attack. 
Understanding such contributions is essential for enhancing the transparency and 
interpretability of the model's decision-making process, ultimately fostering a more 
comprehensive comprehension of its performance characteristics. 
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Figure 17. xAI example. 

 



 

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1) 

                     Page 38 of 77        © 2023-2025 HORSE 

5 Development of the Policies and Data Governance 

5.1 User Stories 

For the description of the Policies and Data Governance component, we have opted to employ 
user stories. In software development and product management, a user story is an informal, 
natural language description of features of a software system. A user story is written from the 
perspective of an end user or user of a system. 

In particular for the PAG, the user of the software is understood to be the “HORSE Operator”, 
i.e. an individual with 6G domain knowledge who is using the HORSE platform in order to set 
up a 6G monitoring infrastructure. The user stories related to the PAG stem from the PAG 
requirements (see Appendix B) and have been written around the main functionalities of 
access management, data anonymisation, data retention, data encryption and observability. 
For each user story, acceptance criteria is given, which will help the development & 
management teams to define a user story as done, or still in-progress. 

5.1.1 Access Management 

Access Management 

As a HORSE Operator 

I want to Use a “Policies Editor” (part of the HORSE Dashboard) 

So that I manage the access policies on the collected datasets 

 

Acceptance Criteria 

• The user can define the level of the access policies on a dataset based on the requestor's 
attributes. 

• The user can update access policies on a dataset. 

• The user can remove access policies on a dataset. 

• The user can combine access policies on a dataset. 

• The system automatically enforces access control decisions on the collected datasets 
based on the associated dataset access policies. 

The policies editor allows the HORSE Operator to grant/deny access to a specific dataset per 
user and per component. In the former case, access to a specific dataset can be 
granted/denied to a specific username. In the latter case, access to a specific dataset can be 
granted/denied to a specific component from a list of HORSE system components, e.g., the 
Early Modelling component, the DTE component, etc. 

5.1.1.1 Implementation 

For the implementation of the access management functionality, OpenFGA [23] is used as the 
basis for the authorisation service, complimented by custom HORSE implementation using 
Python programming language. 
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OpenFGA leverages Google’s Zanzibar, a global system for storing and evaluating access 
control lists. Zanzibar provides a uniform data model and configuration language for 
expressing a wide range of access control policies from hundreds of client services. 
Furthermore, it supports Python, which is the programming language used for the custom 
HORSE implementation. On the less positive side, OpenFGA makes it difficult to support 
queries of the type “Allow access to all except…” which in certain cases might increase the 
effort needed to express certain authorisation policies. 

5.1.1.2 Sequence Diagrams 

 

Figure 18. Create New Access Policy 
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Figure 19. Check Access Authorization 

 

 

Figure 20. Read Policies List 
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Figure 21. List Authorization Objects 

5.1.2 Data Anonymisation 

Data Anonymisation 

As a HORSE Operator 

I want to Use a “Policies Editor” (part of the HORSE Dashboard) 

So that I configure data anonymisation rules on the collected datasets 

 

Acceptance Criteria 

• The user can classify the disclosure risk for the dataset’s attributes. 

• The user can define data anonymisation rules based on the classification of the dataset’s 
attributes for disclosure risk and the anonymisation method used by the component. 

• The system automatically executes data anonymisation operations on the collected 
datasets. 
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5.1.2.1 Implementation 

For the implementation of data anonymisation, the PAG will use a simple anonymisation tool 
along with some custom implemented methods. The tool is called Smile [24] and implements 
text anonymisation in many languages using Faker. 

Smile includes methods on anonymising network-related fields (e.g., IP addresses, MAC 
addresses, URLs, etc.). 

Examples of possible anonymisation methods that the HORSE Operator can select on a 
column: 

• IPv4, IPv6 Address Masking: changes an IPv4 or/and an IPv6 address into a fake one. 

• Text Masking: changes a text/string by adding '*' characters into the string. 

• Perturbation: adds “random noise" to a numeric field  

• Date Masking: changes a date value into a fake one. 

The enforcement of anonymisation (e.g., the anonymisation of certain attributes of a stored 
dataset) is applied in the data store(s) of the HORSE platform. For more information on the 
available data store(s) of the HORSE platform, see section 5.2. 
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5.1.2.2 Sequence Diagrams 

 

Figure 22. Store Anonymisation Config & Perform Anonymisation 
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Figure 23. Retrieve Anonymisation Config 

5.1.3 Data Retention 

Data Retention 

As a HORSE Operator 

I want to Use a “Policies Editor” (part of the HORSE Dashboard) 

So that I manage the data retention rules of the collected datasets 

 

Acceptance Criteria 

• The user can define retention rules for a collected dataset based on the dataset’s attributes 
(e.g. delete dataset 3 years after the collection timestamp, delete dataset 24h after the 
collection timestamp for datasets originating from RAN, etc.). 

• The user can update retention rules of a dataset. 

• The user can remove retention rules of a dataset. 

• The user can combine retention rules of a dataset. 

• The system automatically implements dataset retention rules at the correct timing for the 
collected datasets. 
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5.1.3.1 Implementation 

For the implementation of data retention, a simple, lightweight Python job scheduler [25] was 
used. It offers: 

• functionality to run in the background, in a separate thread; 

• many options for setting up a scheduler which runs at specified intervals; 

• functionality for exception handling. 

The enforcement of the retention policy (e.g., the deletion of a dataset) is applied in the data 
store(s) of the HORSE platform. For more information on the available data store(s) of the 
HORSE platform, see section 5.2. 

5.1.3.2 Sequence Diagrams 

 

Figure 24. Create New Retention Policy 
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Figure 25. Enable Retention Policy 

 

 

Figure 26. Read Retention Policies List 
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5.1.4 Data Encryption 

Data Encryption 

As a HORSE Operator 

I want to Use a “Policies Editor” (part of the HORSE Dashboard) 

So that I configure encryption on the collected datasets 

 

This user story shall be further elaborated in deliverable D3.2 HORSE Platform Intelligence 
developed (IT-2). 

5.1.5 Observability 

Observability 

As a HORSE Operator 

I want to Use a UI 

So that I monitor the execution status of the dataset collection jobs 

 

This user story shall be further elaborated in deliverable D3.2 HORSE Platform Intelligence 
developed (IT-2). 

5.2 Datasets 

The following datasets have been used during the development of the initial release of the 
PAG component and have been imported in the Demo Data Store: 

• sample_data.json 

 
This file contains sample data regarding VNFs that belong to a simulated 5G Network. 
In order to capture the bytes transmitted, Kiali and Prometheus were reused on top of 
the containerized network Istio Service Mesh. 
 
The captured metric is istio_request_bytes_sum (the total number of bytes, added 
together across all requests). 
 
The data model which accommodates the captured metric is an array of values that 
capture the sum of bytes every 15 seconds beginning with metadata in each value. 
 
The values list contains all the requests performed in the 5G network. 
 

• 5G-NIDD 



 

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1) 

                     Page 48 of 77        © 2023-2025 HORSE 

 
This dataset presents 5G-NIDD [26], a fully labelled dataset built on a functional 5G 
test network that can be used by those who develop and test AI/ML solutions. 5G-NIDD 
contains data extracted from a 5G testbed. The testbed is attached to 5G Test Network 
in University of Oulu, Finland. The data are extracted from tow base stations, each 
having an attacker node, several benign 5G users. The attacker nodes attack the server 
deployed in 5GTN MEC environment. The attack scenarios include DoS attacks and 
port scans. Under DoS attacks, the dataset contains ICMP Flood, UDP Flood, SYN 
Flood, HTTP Flood, and Slowrate DoS. Under port scans, the dataset contains SYN 
Scan, TCP Connect Scan, and UDP Scan. 

5.2.1 HORSE Data Store 

At M12 of the project, as per the architecture described in deliverable D2.2, the main data store 
for the data assets in the HORSE project resides inside the pre-processing module. 

The design of the PAG component has taken into account the possibility that during the 
evolution of the project, multiple distributed data stores might become available. The PAG 
component has implemented a structure in which datasets and their data stores are connected, 
which enables the PAG to extend its implementation and support multiple data stores, 
unknown at M12, in case this need arises in the future. 

5.2.2 Demo Data Store 

A demo data store has been implemented provisionally for the development of the PAG initial 
release. This demo data store is based on MinIO and holds the demo datasets available at 
M12 of the project. 

The demo data store will not be maintained beyond the development of initial release of the 
PAG component. 

MinIO [27] is a high-performance, S3 compatible object store. It is built for large scale AI/ML, 
data lake and database workloads. It is software-defined and runs on any cloud or on-premises 
infrastructure. 

MinIO is built to deliver exceptional speed and efficiency, allowing organizations to effortlessly 
manage and scale their object storage needs. Its flexibility, ease of deployment, and robust 
features make MinIO a compelling choice for businesses seeking a reliable and cost-effective 
solution for distributed object storage. 

Below is a screenshot from MinIO Console, the web-based graphical user interface that MinIO 
provides. MinIO Console is a useful tool for interacting with a MinIO Server and manage 
various tasks like Identity and Access Management, Metrics and Log Monitoring, or Server 
Configuration. 
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Figure 27. MinIO Console 

 

 

Figure 28. Create New Asset 

 

 

Figure 29. Read Assets List 
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5.2.3 Metadata 

The PAG Storage does not store data assets per se; it stores the metadata of the data assets, 
while the data assets themselves are stored in the available data store(s) of the HORSE 
platform (see 5.2.1 and 5.2.2 above). For each dataset, the following metadata are imported 
into the PAG Storage: 

• name 

• description 

• file type (e.g., json, csv) 

• the path of the dataset inside the data space 

• columns (types and names in a json format columns 

5.3 Development Roadmap 

The initial release of the PAG component comes on M13 of the project, as a standalone 
component ready to be integrated. It includes the functionality for access management, data 
anonymisation and data retention, as described with the help of user stories in section 5.2 
above. Additionally, it includes (i) the PAG storage for storing the metadata and the policies, 
and (ii) the Demo Data Store for storing the datasets. 

The functionality for data encryption and observability shall be further elaborated in deliverable 
D3.2 HORSE Platform Intelligence developed (IT-2) and will be developed as part of the final 
release of the PAG component on M30. Additionally, the final release shall include the 
connection with the HORSE Data Store and any updates or enhancements to the 
functionalities already delivered on M13. 

PAG initial release (M13) PAG final release (M30) 

Access Management Data Encryption 

Data Anonymisation Observability 

Data Retention Connection with HORSE Data Store 

Demo Data Store 
Enhancements/Updates of functionalities 
delivered on M13 

PAG Storage  
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6 Development of the Threat Detector and Mitigation 
Engine 

6.1 Threat Detector and Mitigation Engine Features 

According to the main concepts described in Section 3.2 of the HORSE Architectural 
Deliverable D2.2 [28], here recalled for the sake of simplicity, the HORSE platform 
encompasses three main layers:  

• the Intent-based Interface (IBI), that aims to simplify the network configuration and 
operation by receiving high-level intents from the network manager or software agents. 

• the AI Secure and Trustable Orchestration (STO) module, that enables reliable network 
operation by assuring correct orchestration of the network resources and execution of 
policies proposed by the IBI layer. 

• the Platform Intelligence (PIL) module, that adds intelligence and autonomy to the network 
management, including sub-modules that can predict the behaviour of the network before 
reconfiguring the network and sub-modules capable of detecting and reacting to network 
security threats, i.e., the Real Context -DEME component Figure 30. 

 

 

Figure 30. DEME sub-module in the overall architecture [28]. 
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The Detector and Mitigation Engine (DEME) works in the “real context” providing threat 

detection in the real infrastructure. It focuses on threat detection and high-level mitigation 

advise with a special attention to the most dangerous attack cases, able to impact, and often 

paralyze, whole portions of the network for a long amount of time [28]. 

 

 

Figure 31. HORSE Threat Detector Block Diagram 

 

The conceived solution applies a ML pipeline or chain architecture (that are currently seldom 

applied and mainly on the image processing arena [41]) to improve the SotA. 

The overall implemented solution, exemplified in Figure 31, consists of a double processing 

step, easily extendible with further steps according to the evolving future cybercrime 

landscape. 

The first ML step 1 is dedicated to the baseline elaboration and real-time parameters variations 

computation and therefore allows to avoid provisioning complex thresholds sets. 

The last step, ML step 2, is able to analyse simultaneously all the parameters variation in order: 

• Provide Early Detection on any known alarm identifiable by the M monitored parameters, 
much faster than using SotA specific detectors. 

• Provide Early Detection on any unknown alarm, 0-day, identifiable by the M monitored 
parameters. 

• Provide a relative attack probability or detection confidence. 

• Automatically adapt the probability numerical evaluations based on the network evolution.  

More in detail, the scheme that has been conceived, implemented and tested, is constituted 

by a sequence of three specialized steps, Figure 32, whose composition is particularly suited 

to the functional requirements outlined. 

1) STEP1: Use of predictive analytics (Supervised) ML tools (i.e., regressions) trained by 
the historical network data. This first step must provide N parallel blocks, one for each 
monitored parameter, and must be able to provide in output the N real-time 
comparisons of the current network data (that are periodically collected) with the 
predicted baselines.  

2) STEP2: Use of a numerical elaboration to normalize and adapt the N comparison 
outputs in order to provide the following ML step a homogeneous set of data to work 



 

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1) 

                     Page 53 of 77        © 2023-2025 HORSE 

upon. Each comparison, indicated with ∆ in Figure 32, will have to be normalized and 

adapted. 
3) STEP3: Use of a (Supervised) ML tool trained on the variations of the N variables 

provided by the previous steps to promptly detect any related attack with a 360 degrees 
perspective (no siloization). 

 

 

Figure 32. ML-based chained attack detector steps 

 

6.1.1 Step by step detailed operation description 

The first stage, STEP1, foresees the application of predictive Supervised Machine Learning 
Techniques. 

In this step many techniques have been tried and among them stands out the first 
implementation of a new regression algorithm (Ericsson patent) specifically conceived for 
threat detection sped-up (detailed tests results will be available and presented in the second 
phase of the HORSE project, in the next version of this deliverable, D3.2, and in the WP5 
context). 

Each regression is trained with a proper set of historical values and is able to retrieve a trained 
model, i.e., a kind of predicted trend or baseline that is automatically updated during the 
following network life. 

It is just the case to mention that different concurrent and multi-threading technologies and 
frameworks have been investigated, applied and tested to achieve the best performance and 
scalability results. 

After the training phase, each ML regression starts comparing the current values extracted 
from the network with the expected (predicted) trends. 

It is important to highlight the fact that no threshold scheme is applied on the comparison 
outputs: the computed differences are only normalized and adapted, in the STEP2 stage, in 
order to provide the last ML block with a homogeneous and consistent data space. 
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Figure 33. STEP1 regressions 

Figure 33 shows in green the predicted trend and in red the current values that are 
progressively collected and compared with the green prediction in search of any possible 
anomaly. 

During normal states, the normal network fluctuations cause the red curve to ripple around the 
green predictions, therefore the ∆ comparison will result in relatively small rippling values. 

At the beginning of a real attack, highlighted by the light blue area, traffic is starting to grow but 
its difference with the expected value (∆ comparison) has not yet reached very high values.  
Therefore, the last ML stage, STEP3, during the training phases will observe small rippling 
values relatives to both normal states and relative to the initial stages of the attacks.  It will 
therefore estimate a normal or attack probability based on the historical attack frequency (the 
occurrence rate). In other words, if an attack occurs repeatedly the ML learning STEP 3 will 
tend to modify the confidence levels associated to small rippling values and vice versa.  

During the attack the monitored parameter rumps up in a very short time and the detector 
progressively increase the associated detection confidence triggering the network 
management mitigation actions. 

After detections but before that the mitigation actions are activated and become effective the 
monitored parameter shows a saturation effect. 

After the mitigation actions have become effective the monitored parameter rapidly decreases 
reaching again the normal state. 

Normal state achieved after the effect of the mitigation actions. 

In the bottom part of Figure 33, in orange we can see the absolute and normalized value of the 
comparison, indicated as ∆. 

To implement the egress stage, STEP 3, of the proposed architecture, the research activities 
have also tested multiple different flavours of Supervised Machine Learning algorithms (e.g., 
Multivariate techniques, Linear Regressions, Random Forest, XGBoost, Decision Tree) with 
appreciable results that will be completed and presented in the successive version of this 
deliverable D3.2, and in the context of WP5. 

STEP 3, the stage with the highest overall visibility, is able to learn and distinguish the overall 
normal network fluctuations of all the monitored variables from their attack indicating 
anomalies. 

1 

2 

3 

4 

5 

6 
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By the way, in doing so, it dynamically and run-time automatically follows and adapt its 
detection to each network evolution or traffic modification without any external setting (e.g., 
threshold tuning, parameter configurations etc.) improving its performances and making it 
perfectly suitable for a really one hundred per cent zero-touch solution. 

6.1.2 The new regression algorithm 

The Machine Learning process of dynamic updating the learnt model, which is undoubtedly a 
strength point as it automatically allows the forecasts to follow and adapt to evolutions in 
infrastructure, traffic, etc., constitutes, depending on the characteristics of the time series being 
analysed at input, an important weight in the total detection time. 

For more details on the innovative regression algorithm conceived to reduce it (Patent 
WO2021190760) [47], please refer to Annex D. 

6.1.3 Innovative aspects summarization 

In compliance with the requirements outlined in the first part of this chapter, the threat detector 
has been designed to meet the requests of performances, scalability, speed, flexibility and 
automation. 

The solution conceived and implemented presents several innovative aspects that distinguish 
it from the state of the art: 

1. From the point of view of detection speed, in addition to multiple measures applied for 
this objective, an innovative algorithm has been implemented for the first time which 
exploits a weighted linear combination of concurrent regressions working on the 
original time-series x(t), on its time-shifted versions x(t-nT), and on their derivatives. 

2. From the point of view of the detector architecture, a multi-stage ML solution has been 
identified which, although sometimes applied in the field of Image processing, is 
atypical in the field of CyberSecurity. This choice has proven particularly valid for its: 

a. Flexibility - adequacy to detect multiple forms of attack, their combinations or 
evolutions, new forms of attack (0-day) etc. 

b. Suitability for fully automated solutions without any need to set and periodically 
update complex threshold schemes or network configuration parameters, etc. 

Additional important innovation aspects are related not to the detector component itself, but to 
the innovative patterns resulting from interactions with other blocks (e.g., Digital Twin). These 
aspects will be better described in the following version of this deliverable, D3.2, and in the 
WP5 context. 

6.2 Threat Detector and Mitigation Engine Interfaces 

6.2.1 Ingress Interface 

This interface, indicated with number 1 in Figure 30, allows the DEME block to receive the 
input data from the preceding Smart Monitoring block, that continuously and capillary collects 
them from the 6G infrastructure, and Pre-processing that unifies and standardizes the collected 
data. 

As previously explained, in the context of security, anomaly detection is a time-sensitive task. 
Operators ideally want to be alerted of potential breaches or system failures within minutes of 
suspicious signals. Every second counts when dealing with an attacker that is actively 

https://ericsson-my.sharepoint.com/personal/orazio_toscano_ericsson_com/Documents/Lavoro/ProgettiFinanziati/6Green/WP3/6Green_Budget+Effort+WP+Deliverables_vSubmitted.xlsx?web=1
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exploiting a system. The other side of the coin is that thorough and very frequent data collection 
is resource-intensive and can be burdensome for the infrastructure. 

For these reasons reasonable trade-offs indicates practical and typical values from 3 minutes 
to some tens of minutes [46]. 

The learning phase, considering a common value of 15 minutes, and a realistic training length 
of at least some thousands of samples, requires more than three weeks making the 
progressive mode unsuitable for practical real demonstrations. 

For this reason, the DEME design and implementation has foreseen two separate micro-
services to better separate the history data from the run-time data ingestion: 

• DEME-engine: containing the threat detector with the complete logic and its API as 
described in the following paragraph. The DEME-engine provides different ways to input 
the history data (e.g., from Data source, from file). 

• DEME-proxy: a useful utility microservice that can be used to interface the DEME-engine 
with a Kafka bus for run-time operations (consume data and publish outcomes). 

 

Figure 34. DEME micro-services 

 

The data input format is composed, for each snapshot, by an initial timestamp, followed by the 
sequence of monitored data for each node composing the infrastructure topology. In the 
following Figure 35 we see an example with eight values per node and two nodes.   
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Figure 35. Ingress data format 

6.2.2 Egress Interface 

This interface, indicated with number 2 in Figure 30 allows the DEME microservice to provide 
the outcomes of its detections to the Distributed Trustable AI Engine (DTE). As previously 
presented in Figure 34, also in this case the DEME engine provides its own API, hereinafter 
detailed, but also a proxy utility that can be usefully applied for a straightforward connection 
with a Kafka bus. 

The Detector outcomes are updated with the same rate of the ingress snapshots: i.e., in case 
of, for example, a 3-minute snapshot period from the Smart Monitoring block, the detector will 
update its outcomes each 3 minutes (a part a very small computational time). 

Therefore, also in case of direct interface with the DEME engine API in asynchronous mode 
the outcomes are expected to be stable inside each ingress sampling period. 

The DEME detector provides, for each node in the topology, the type of attack detected (if 
any), and the detection confidence (with a 0 to 1 value).  

As described in the previous sections, multiple attacks (attacks combinations) acting same 
time to the same node are detectable (also providing a certain gain in terms of detection speed) 
and the same applies to new forms of attack as long as they can be identified by leveraging 
the space of the monitored variables. 

6.2.3 Digital Twin Interface 

The Digital Twin interface, indicated with number 3 in Figure 30, represents a high-level 
exchange of information between the two blocks that allows conceptually to mutually benefit 
from the knowledge acquired by the other block. 

New forms of attacks or new, previously unseen, combinations detected by DEME will be 
usefully elaborated by the Digital Twin to complete the “what – if” analysis and, for example, 
provide suggestions for the best applicable mitigation action. 

In turn, new hints from the Digital Twin may motivate changes, for example, in the DEME 
ingress variables space to increase the detector visibility on new unknown aspects. 

This interaction will allow the Horse framework to evolve thanks to the continuous learning of 
new scenarios. 

6.3 DEME Implementation overview 

6.3.1 Background 

This section describes how to check prerequisites, how to install the toolkit and how to verify 
its correct installation on your system. It assumes some working knowledge of shell scripting 
and docker. 
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We define these terms: 

• Client: host from which commands will be run against the Server. 

• Server: host where workloads are executed. 

All commands are executed on the Client. It is assumed that Client and Server are separate 
hosts. 

6.3.2 Prerequisites 

• Docker installed on own machine. 

• Move to the root folder of the toolkit in order to proceed with the installation. 

6.3.3 Installation 

• Launch the script to build the docker image of the server: 

 
./build-engine.sh <version> 
 

• Now the server is ready to be started by launching: 

 
./run-engine.sh <version> 

<version> is the minor version number. 

• To verify that the server is correctly started send a GET request to the address 
localhost:8090/is_ok and check that the response is {"message": "ok"} 

6.3.4 Interfaces 

1. Management Methods 

 

HTTP 
Method  

Path  Action  

GET  /is_ok  Healthcheck of Server 
GET  /is_ready  Rediness of the Server  

GET  /dump  
Returns configuration parameters of the 
Server 

      

2.  Operational Methods  

 

HTTP 
Method  

Path  Action  

POST  /estimate  
Take in input a snapshot of network 
parameters and it elaborates the attack 
detection 
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3.  Extraction Methods 

These methods are meaningful just after running Operational Methods.  

 

HTTP 
Method  

Path  Action  

GET  /ro  
For all nodes it returns the accuracy of the 
detection of the identified attack. 

GET  /ro_verbose  
For all nodes it returns the accuracy in % of the 
detection of the identified attack in a verbose 
mode 

GET  /teta 
For all nodes it returns the type of the 
detected attack expressed as angle  

GET  /teta_verbose  
For all nodes it returns the type of the 
detected attack in a verbose mode 

            GET   /detection 
For all nodes it returns the type and the 
probability of detected attack 

6.3.5 Usage 

In this section it is described an example of the usage of the toolkit. Since in this first iteration 
the toolkit is running in a standalone way, the history data and a snapshot of network features 
are locally loaded. So, in this procedure APIs will be sent using CURL command that will be 
replaced by the operations inserted in the next iterations. 

• Start the Server  

• Check it is ready using the GET request /is_ready 

 
curl -X  GET http://localhost:8090/is_ready  
 
If true, the server is ready. 
 

• Send from the Client the POST request/estimate passing as parameter a json containing 
the snapshot of network parameters in a specific moment. 
 
curl -H 'Content-Type: application/json' -d "@atk-root/data/test.json" -X POST 
http://localhost:8090/estimate 

 
Request returns a “done” message when it ends the elaboration. 
 

- To extract the detection related to the current sent snapshot send form the Client the 
GET request /detection 
 
curl -X GET http://localhost:8090/detection 

 The requests return a json response in this format: 

[ 

    { 

        "node": "<node>", 

http://localhost:8090/estimate
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        "detection": [ 

            { 

                "attack": "<type>", 

                "accuracy": <accuracy> 

            } 

        ] 

    } 

] 

6.3.6 Debugging tools 

For debugging purpose, a simple web application has been developed.  

For example, the user can set, using sliders, different combinations of network features. The 
system will predict in real time the probability of attack. This will be show in the related chart. 
When the probability of an attack exceeds a fixed threshold, the line of the chart becomes red 
to notify the user. 

 

Figure 36. HORSE Real-time attack detection web. 

  

In order to run the debugging tool: 

• Start the toolkit Server and check it is ready. 

• Move to the root folder of the debugging tool. 

• Run horse_debug_tool.html using a browser. 



 

HORSE Project - D3.1: HORSE Platform Intelligence developed (IT-1) 

                     Page 61 of 77        © 2023-2025 HORSE 

7 Conclusions 

This deliverable reflects a summary of the progress of the work done in Work Package 3. All 
the developments will be in continuous update also along with Work Package 5 and the Task 
Forces defined to better integrate the work of each partner into the project.  

All the final developments and a total integration of the components explained here will be 
portrayed on the IT-2 document version of the Work Package 3. 
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Appendix A: Meaningful use cases 

Reflection/Amplification DDoS attacks 

“Telecommunication biggest issue was and will be denial of service” [29] 

Distributed denial of service (DDoS) attacks, are among the most common attacks that 
telecommunications companies must dodge on a daily basis [30] 

The internet and telecom industry was among the industries that experienced the largest 
increase in DDoS attacks, up 210% on a yearly base [31] 

 

The types of attacks that are most dangerous in network management are indeed the ones 
that can potentially paralyze the entire network, or a large part of it, and that require long 
recovery times impacting the activities of a very large number of users, and among these, in 
first place, there are undoubtedly the DDoS attacks. 

DDoS attacks are still on the rise [44], and important actors in the CyberSecurity field like 
Norton calls them “one of the most powerful weapons on the internet”. 

Denial-of-service attacks can come at any time, impact any part of infrastructures operations 
or resources, and lead to massive amounts of service interruptions and huge financial losses 
(for example in terms of remediation costs, lost revenue, lost productivity, loss of market share, 
and damage to brand reputation [44]). 

For example, Yahoo!, who experienced one of the first major DDoS flooding attacks, saw their 
services offline for about 2h [29].  

The same happened in occasion of the “largest ever” internet attack, when a 9 of the 13 domain 
name system (DNS) root servers were shut down for an hour-long  DDoS flooding attack [30], 
or the notorious IoT device based DDoS attack that involved malicious DNS lookup requests 
from tens of millions of IP addresses that rendered major Internet platforms and services 
unavailable to large swaths of users in Europe and North America for several hours throughout 
the day [31]. 

DDoS attacks are characterized by a sharp increase in the malicious traffic with which the 
networks are flooded, and the network operators’ mitigation actions need to be very timely 
because these kinds of attacks are able, in a very short time, to paralyze the whole network 
making it not responsive. 

Considering that any delay in detecting the flooding attacks risks making any mitigation action 
useless, these are the most challenging cases to effectively provide a near-real time attack 
detection able, at the same time, to face the explosive increase in the volume of Internet traffic 
and evolving sophistication of the attacks. 

Among this family a particularly dangerous subset is undoubtedly represented by the reflection 
amplification attacks, mainly due to the fact that they are extremely cheap for hackers who 
exploit the victim's own infrastructure (please note that the attack probability of occurrence is 
directly proportional to the attack cost coefficient [43]). 

The same GitHub attack mentioned in Appendix C, as one of the largest known, was in fact 
precisely A DDoS reflection amplification attack coming from thousands of different 
autonomous systems and tens of thousands of unique endpoints. 

This subtype of attack is a combination of two malicious factors. 
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First, the attacker simulates a request from the targeted server by putting its IP address into 
the request, ultimately using a public server as a “reflector.” The server receives the request 
indicating the targeted server and returns a response to it, thus “reflecting” the request. A lot 
of data can be requested, which means the response of the DNS server can become many 
times larger, and the ratio is indicated with “amplification ratio” or “gain ratio” (that in the GitHub 
attack case reached 51000, please refer also to Table 4). Finally, traffic is maximized by 
querying through a botnet so that the bandwidth of the targeted server is overloaded. 

 

 

Figure 37. Reflection Amplification Attack Scheme 

 

Table 4. Amplification factors 

Protocol/Server 
Amplification 

factor 

Memcached 10000 to 51000 

NTP 556.9 

ChartGEN 358.8 

QOTD 140.3 

RIPv1 131.24 

CLDAP 56 to 70 

LDAP 46 to 70 

DNS 28 to 54 
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Quake Network 
Protocol 

63.9 

TFTP 60 

SSDP 30.8 

MSSQL 25 

Kad (P2P) 16.3 

Portmap 
(RPCbind) 

7 to 28 

SNMP 6.3 

Stream Protocol 5.5 

NetBIOS 3.8 

BitTorrent 3.8 

Multicast DNS 
(mDNS) 

2 to 10 

 

Among the most interesting example cases, in addition to the GitHub worldwide famous DNS 
case, stands out the NTP one, first of all because it touches the network synchronization 
servers, that are crucial for the operation of the radio network, and secondarily because it 
implies a more complex flow analysis (i.e., NTP “MONLIST” packets, NTP type=7) that 
however can lead to detection speed improvements. 

API Vulnerability Protection (e.g., RNAA attack) 

According to a 2019 Akamai study [45], 83% of all web traffic was produced by APIs. Since 
APIs are now the simplest approach to provide functionality and data in an information system, 
this trend will likely continue. 

But while the usage of APIs has expanded and produced more sophisticated apps that 
enhance productivity and use in the business world, it has also sharply increased the risk of 
cyberattacks. In fact, because of their exposure and "critical" role in handling sensitive data, 
they are easy targets for cyberattacks. Thus, a cybersecurity strategy's primary component 
needs to be API security. 

The same level of attention must be paid not only to web applications but also to 5G/6G SBA 
Network function (e.g., Network Exposure Function (NEF) expose the 3GPP network 
capabilities via APIs). 

The most common forms of API attacks comprise: 
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• DoS attacks trying to exhaust the limited resource that an API needs to respond to 
legitimate requests. By flooding an API with false requests, its resources are blocked from 
responding to those requests and not to others. 

• Bruce force attacks trying to test all possible combinations of a parameter, through a 
process of trial and error in the hope of guessing right. he objectives can be multiple: brute 
force of an authentication form to steal an account, brute force of a login to retrieve 
sensitive data, brute force of a secret, etc. 

• Code injections: If attackers know the programming language used by an application or 
API, they can inject code through text input fields to force the web server to execute the 
desired instructions. 

DoS signalling attack from 5G SMF/UPF (PFCP) impacting on data 
plane & slicing 

A particularly dangerous enhancement of this attack is its fusion with a variant of the PFCP 
Flood Attack. 

 

Assuming that a malicious user has gained access to the SMF NF and wishes, for example, 
to interrupt the connectivity of UEs without targeting a particular subscriber, they can run the 
session deletion attack numerous times with incrementally increasing SEIDs. As no other 
identifier is requested by PFCP for the deletion of a session by UPF, a malicious SMF can 
instantiate a flood of session deletion request, carrying either random or increasing SEIDs. 
This allows the easy automation of attacks, as only a single identifier is required for the control 
of subscribers’ sessions. This flood-based variation of the PFCP Session Deletion attack is 
described by Algorithm 1 in Figure 39. 

Figure 38. SMF / UPF N4 
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Figure 39. Session Deletion Attack 

 

Man in the Middle – TCP Session Hijacking Attack 

The well-known background of the TCP Session Hijacking attack is based upon TCP packet 
spoofing. The TCP spoofed packets, whose signature matches that of an existing TCP session 
are accepted by the target machine if the four elements shown in Figure 40 match with the 
signature of the session and if provided with an acceptable sequence number. 

 

Figure 40. Injection data into a TCP connection 
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Appendix B. PAG Requirements 

The functional requirements related to PAG, according to deliverable D2.1, are the following 
and are presented in this annex as a reminder to the reader: 

REQ-F-23 - Access Management - The user must be able to define and then the HORSE 
platform must enforce access policies in real time and ensure that the information is only 
available to authorised users (applies to PAG and IBI). 

REQ-F-25 - Granularity of the access - The HORSE platform should be able to support different 
roles in accessing the system (applies to PAG and IBI). 

REQ-F-35 - Data anonymisation - The HORSE platform must execute data anonymisation 
operations on collected data assets. 

REQ-F-36 - Data Encryption - The HORSE platform must support end-to-end data encryption 
for data in transit. 

REQ-F-37 - Observability - The HORSE platform should allow the user to monitor the status 
(successful or failed execution) and view an incident summary of all AI pipelines. 

REQ-F-38 - Data Retention - The user should be able to define and then the HORSE platform 
should execute data retention operations (e.g., automated deletion after a certain due date) on 
collected data assets. 
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Appendix C. KPI related to the detector performances 

Before delving into the solution conceived and implemented specifically for the HORSE 
platform, it is certainly useful and appropriate to review the main requirements and KPIs of a 
modern, effective and high-performance threat detector. 

Measuring the performance of a detection algorithm is crucial in order to evaluate its 
effectiveness and the specialized literature reports several types of metrics used for this 
objective: 

• Detection Rate (DR) 

• Precision (P) 

• False positive rate (FPR) 

• Accuracy rate (AR) 

• F1 score (F1) 

• Fitness function (F) 

• Time to Detect (TTD) 

 
DR: Detection rate, also known as recall, is the ratio of correctly predicted positive observations 
to all observations in the actual class 

 

𝐷𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

P: Precision is the ration of correctly predicted positive observations to the total predicted 
positive observations. 

 

𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

FPR: False positive rate, also known as fall-out or false alarm ratio, is the ratio between the 
number of negative events wrongly categorized as positive and the total number of actual 
negative events. 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

AR: Accuracy rate is simply a ratio of correctly predicted observation to the total observations. 

𝐴𝑅 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 

 

F1: Weighted Average of detection rate and precision. 
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𝐹1 =  2 ∗
𝐷𝑅 ∗ 𝑃

𝐷𝑅 + 𝑃
 

 

F: Fitness is a statistical metric used to evaluate the accuracy of the developed solution. A 
detection system will determine which subset of features are the best according to the fitness: 

𝐹 =  2 ∗
𝛼 ∗ 𝐷𝑅

𝛽 − (100 − 𝐹𝑃𝑅)
 

Where: 

• True positive (TP) is the number of attacks that have been classified properly. 

• True negative (TN) is the number of normal records that have been classified properly. 

• False positive (FP) is the number of normal records that have been classified as attacks. 

• False negative (FN) is the number of attacks that have been classified as normal. 

• α(0,1] e β=1-α are two parameters that respectively specify the importance between DR 
and FPR. 

KPI related to the lifecycle of a cyber attack 

The lifecycle of a cyber-attack is referred to as the time which has elapsed between the initial 
detection and containment of the breach or attack. The detection time, or time to detect (TTD), 
is the length of time that it takes for a business to identify a cyber incident has occurred, whilst 
the response time, or time to respond (TTR), is how long it takes to restore networks or services 
once a cyber incident has been initially detected. 

In cybersecurity, speed defines the success of both the defender and the attacker. Professional 
cybercriminal groups, nation-state actors and advanced persistent threat groups are evolving, 
as are their tools, tactics and procedures and nowadays only need seconds to exploit a 
vulnerability. 

Such situations took place, for example, in winter 2019 when threat actors were mass-scanning 
the internet for network hosts with particular VPN products having a critical vulnerability to 
perform remote code execution (RCE). In minutes, thousands of enterprises were 
compromised. [34] 

Some specific, but unluckily very common forms of attacks (e.g., the availability resources / 
DDoS ones), are characterized by a sharp increase in the malicious traffic with which the 
networks are flooded, and the network operators’ mitigation actions need to be very timely 
because these kinds of attacks are able, in a very short time, to paralyze the whole network 
making it not responsive (please see, for example, Figure 41). 
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Figure 41. Real case of an NTP amplification DDoS attack 

Considering that any delay in detecting the attack risks to make any mitigation action useless, 
the challenge is to effectively provide a near-real time attack detection able, at the same time, 
to face the explosive increase in the volume of Internet traff ic and evolving sophistication of 
the attacks. 

TTD : Time to detect is one of the most important metrics for cyber attack detection. It 
measures how long it takes to discover an incident. The shorter the TTD, the faster it is possible 
to contain and remediate the attack, and the lower the potential damage. A rapid response 
plays a pivotal role in mitigating the potential damage caused by cyber attacks [32] [33].  

TTR : Another key metric for cyber attack response is the time to respond (TTR), which 
measures how long it takes for  the system to take action after detecting an incident. The 
shorter the TTR, the more effective the response strategy, and the higher the chances of 
minimizing the impact of the attack. To calculate the TTR, the system need to track the time 
from when the incident was detected to when it was resolved or closed [32] [33].  

Additional requirements / KPI  

• Scalability: Recent analysis reveals that with little effort, next generation cybercrime tools 
would be able to enact attacks that are thousand times stronger than the ones we have 
seen so far [34]. One of the major concerns is that performing very effective attacks (as 
the DDoS ones) is extremely simple with websites known as Booters or Stressers that 
offer them as a service. These booters provide cheap services, and the costs to perform 
a series of attacks is typically just a few dollars [35].  

DDoS-as-a-service, for example, is part of the cybercrime-as-a-service model and implies 
a hacker providing DDoS (Distributed Denial of Service) attacks for money. The vendor 
usually owns a botnet and advertises his services on the Dark Web. The buyer – who can 
be another hacker or a random individual – selects the target, the type, and the duration 
of the attack. The fee they agree upon is most of the time paid in cryptocurrency. The 
anonymity of this transaction is guaranteed, as there is no contact between the hacker 
and the buyer. [36] 

A further example of how impressive the modern attacks that hackers are able to carry out 
can be, we can mention reflection amplification attacks. 

Recently, GitHub was hit by 1.35 Tbps of traffic all at once [37].  

It was one of the most powerful attacks in the history of DDoS, no botnet was required to 
achieve such high traffic volume. The attackers spoofed GitHub’s IP addresses and took 
control of its memcached (a distributed memory system known for high performance and 
demand) instances. The memcached systems then return 50 times the data of the 
requests back to the victim.  
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GitHub was lucky enough to a afford robust DDoS mitigation service (Akamai Prolexic) 
and the assault dropped off after 8 min but it is now crystal clear that the explosive increase 
in the volume of Internet traffic and the sophistication of modern attacks have posed 
serious challenges on how to implement threat detections in a scalable and accurate 
manner. [38] 

 

• Automation: Cybersecurity automation is closely linked to reaction speed, because 
leveraging on it organizations deal with (and disarm) cyber threats before those threats 
can disrupt their operations. Cybersecurity automation takes human-driven and 
repeatable tasks that could be handled by the devices without human interaction and 
automates that work. Put another way, cybersecurity automation streamlines manual and 
time-consuming tasks into automated workflows, making network security processes more 
efficient and less prone to human error. With enhanced efficiency, faster decisions can be 
made, which also can improve an organization’s entire security posture. For example, 
automation can monitor and scan networks for security loopholes and potential 
vulnerabilities and generate reports that the security teams can use to assess the severity 
of the issue and determine a solution to mitigate it, can monitor compliance states making 
easy for organizations to identify and solve potential compliance problems, and, above all, 
can automate the process for responding to security incidents. Automated incident 
response systems use pre-planned and custom rules to respond to an incident, all without 
human intervention. This can help organizations respond to incidents more quickly and 
reduce the overall impact of a security incident. Other benefits of automated incident 
response are optimized threat intelligence, streamlined operations, and automated 
reporting and metrics capabilities [39]. The advantages of using automated cybersecurity 
systems include: 

 
o Increased efficiency. Cybersecurity automation allows for the rapid detection 

and response to potential threats, reducing the time it takes to mitigate them. 
 

o Improved accuracy. Automated systems can process massive amounts of 
data and uncover patterns that may be difficult for humans to discover, leading 
to fewer false positives or negatives. 
 

o 24/7 monitoring. Automated systems can monitor networks and systems 
continuously for potential threats, providing round-the-clock protection. 
 

o Scalability. Automation can be used to scale security operations to satisfy the 
requirements of organizations of all sizes, allowing for more effective security 
management while keeping costs as low as possible. 

 
The HORSE threat detector aims, as described below, to further enhance the level of 
automation to automatically learn the characteristics of the network and its traffic 
dynamically and continuously, improving, in this way, the overall performance and not 
requiring dedicated parameter configurations by cybersecurity experts. 
 

• Flexibility/Upgradability: Products based on machine learning are often promoted by 
vendors as catch-all solutions to a broad array of cyberattacks. However, unbiased 
experimental results have shown so far that ML algorithms may provide superior 
performance when they focus on specific threats instead of trying to detect multiple threats 
at once [40]. The other side of the coin is that specific detectors present some important 
weaknesses: 

o Slower detection in case of combined attacks, due to their limited visibility. 
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o In spite of the fact that ML based approach are theoretically preferrable on older 
ones for their detection speed, in case of new form of attacks, zero-day, the 
necessity to design, implement, train and tune new specific detectors makes in 
these cases the specific detectors solutions unresponsive and ineffective.  

Based on these considerations, a modern detector must be designed to be easily 
upgradable and to be easily allocated in plug-and-play mode in a framework suitable 
to accommodate further detection services over time according to the evolution of 
Cybercrime techniques. 
Furthermore, it must be provided with maximum visibility to be able to identify both 
specific attacks and their combinations, as well as the maximum possible number of 
new forms of attacks, zero-day. 
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Appendix D. Threat detector innovative ML algorithm 

Studying in detail the different impacts of various computations in the overall timing budget, it 
has been demonstrated that the replacement of standard Machine Learning regressions (e.g., 
Linear, ARIMA, SARIMA etc.) with a weighted linear combination of concurrent regressions 
working on the original time-series x(t), on its time-shifted versions x(t-nT), and on their 
derivatives (i.e., interpolations of their residuals, defining residuals the differences among the 
received and predicted values) is able to provide an important gain in terms of detection speed 
[47].  

 

Figure 43, from top to bottom, presents: 

• Real data (orange), ARIMA forecasts (green [original time-series] and yellow [time shifted 
time-series] 

• ∆Tot Overall result of the overall linear combination (plus 200 to plot it) 

• A warning-signal elaborated starting from ∆Tot (red) (plus 150 to plot it) 

• Difference between regressions forecasts and real values (green and yellow) (plus 100 to 
plot it) 

• Derivative functions of difference series (green and yellow) (plus 50 to plot it) 

 

Figure 42. Weighted linear combination of concurrent regressions [47]. 

Figure 43. Waveforms 
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It is possible to appreciate the very low latency from the anomaly condition to the warning 
signal in comparison to a standard regression applications, Figure 44. 

 

Figure 44. Standard regression detection time. 


