
Grant Agreement No.: 101096342
Call: HORIZON-JU-SNS-2022
Topic: HORIZON-JU-SNS-2022-STREAM-B-01-04
Type of action: HORIZON-JU-RIA

D4.2 HORSE AI-assisted human-centric
Secure and Trustable Orchestration
developed (IT-2)

Revision: v.1.0

Work package WP 4

Task Task 4.1, Task 4.2, Task 4.3, Task 4.4

Due date 30/06/2025

Submission date 30/06/2025

Deliverable lead 8BELLS

Version 1.0

Authors Michail Danousis (8BELLS), Eva Rodriguez (UPC), Alice Peremonti
(MARTEL), Alexandros Katsarakis (STS), Alex Carrega (CNIT), Xavi Masip
(UPC), Fabrizio Granelli (CNIT), Iulisloi Zacarias (TUBS)

Reviewers Iulisloi Zacarias (TUBS), Fabrizio Granelli (CNIT)

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 2 of 61 © 2023-2025 HORSE

Abstract

D4.2 HORSE AI-Assisted human-centric Secure and Trustable
Orchestration, documents the final development of the AI-assisted, human-
centric, secure, and trustable orchestration components of the HORSE
platform, as part of Work Package 4 (WP4). It details the implementation,
debugging, and integration readiness of all orchestration modules, including
Smart Monitoring, Pre-processing, the Common Knowledge Base, the RTR
framework, ePEM, DOC, and CAS. These components have reached
Implementation Target 2 (IT-2) maturity and are ready for full integration and
validation in WP5, contributing to a resilient, secure, and intelligent
orchestration framework tailored for 5G/6G environments.

Keywords AI-assisted orchestration, Human-centric security, 5G/6G network
resilience, Smart Monitoring, Pre-processing, Knowledge Base, Intent-
based security, Threat mitigation, Secure orchestration, Cybersecurity
automation

DOCUMENT REVISION HISTORY

Version Date Description of change List of contributor(s)

V0.1 01/04/2025 1st version of the template for comments Michail Danousis (8BELLS)

V0.2 03/04/2025 1st version of the Table of Contents Michail Danousis (8BELLS), Xavi
Masip (UPC), Fabrizio Granelli
(CNIT)

V0.3 10/04/2024 Updates in the HORSE introduction of the
deliverable

Michail Danousis (8BELLS), Eva
Rodriguez (UPC), Alice Peremonti
(MARTEL), Alexandros Katsarakis
(STS), Alex Carrega (CNIT)

V0.4 24/04/2024 Updates in the Components’ Sections Michail Danousis (8BELLS), Eva
Rodriguez (UPC), Alice Peremonti
(MARTEL), Alexandros Katsarakis
(STS), Alex Carrega (CNIT)

V0.5 08/05/2025 Refinements of the Components’ Sections Michail Danousis (8BELLS), Eva
Rodriguez (UPC), Alice Peremonti
(MARTEL), Alexandros Katsarakis
(STS), Alex Carrega (CNIT)

V0.6 22/05/2025 Version for internal peer review Michail Danousis (8BELLS)

V0.7 10/06/2025 Revision from TUBS Iulisloi Zacarias (TUBS)

V0.8 11/06/2024 Revision form CNIT Fabrizio Granelli (CNIT)

V1.0 20/06/2024 Quality assessment and final version to be
submitted.

Fabrizio Granelli (CNIT)

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 3 of 61 © 2023-2025 HORSE

Disclaimer
Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the other granting
authorities. Neither the European Union nor the granting authority can be held responsible for
them.

Copyright notice
© 2023 - 2025 HORSE Consortium

Project co-funded by the European Commission in the Horizon Europe Programme

Nature of the deliverable: to specify R, DEM, DEC, DATA, DMP, ETHICS, SECURITY, OTHER*

Dissemination Level

PU Public, fully open, e.g. web x

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)
DEM: Demonstrator, pilot, prototype, plan designs
DEC: Websites, patents filing, press & media actions, videos, etc.
DATA: Data sets, microdata, etc
DMP: Data management plan
ETHICS: Deliverables related to ethics issues.
SECURITY: Deliverables related to security issues
OTHER: Software, technical diagram, algorithms, models, etc.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 4 of 61 © 2023-2025 HORSE

Executive summary
The HORSE D4.2 deliverable, "AI-assisted Human-centric Secure and Trustable Orchestration
developed (IT-2)," serves as the final technical report for Work Package 4 (WP4) of the HORSE
project [1]. Building upon D4.1, this document details the refined, debugged, and fully
developed versions of the project's AI-assisted human-centric secure and trustable
orchestration components, achieving the IT-2 maturity level. The deliverable provides a
comprehensive overview of technical enhancements, security measures, and operational
guidelines, culminating in a robust, secure, and human-centric orchestration platform ready for
final integration in WP5.

This document highlights the final development status of all key components, each playing a
distinct role in enabling AI-driven, secure, and human-centric orchestration for next-generation
networks:

Smart Monitoring evolved into a central observability hub, with enhanced ingestion, indexing,
and fine-grained access control using ElasticSearch.

The Pre-processing Module now delivers high-performance, schema-validated data
harmonization, supporting both real-time and historical analytics.

A new Common Knowledge Base (CKB) was introduced to centralize threat and mitigation
intelligence, using Generative AI and LLMs for dynamic updates and prioritization.

The RTR Framework advanced its ability to translate structured and natural language security
intents into actionable mitigations, with enforcement tracking and performance optimizations.

The End-to-End Proactive Secure Connectivity Manager (ePEM) underwent major
architectural revisions, adding support for K8S and Proxmox, and improving blueprint lifecycle
and NFV management.

Domain Orchestrator Connectors (DOC) now support distributed multicluster operations and
improved northbound and southbound interfacing.

The Compliance Assessment System (CAS) was enhanced with OPA-based policy
enforcement and multi-level compliance reporting.

Collectively, these enhancements position WP4 for successful integration in WP5. All
components now exhibit robust performance, security, and interoperability, aligning with
HORSE’s mission to deliver an intelligent and secure orchestration framework tailored for
dynamic 5G/6G network environments.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 5 of 61 © 2023-2025 HORSE

Table of contents
DOCUMENT REVISION HISTORY ... 2
Disclaimer ... 3
Copyright notice ... 3
Executive summary .. 4
Table of contents .. 5
List of figures .. 7
List of tables ... 8
Abbreviations ... 9
1 About this Document ... 11
1.1 Role of this Document ... 11
1.2 Relationship to other HORSE deliverables .. 12
1.3 Structure of the Document ... 12
2 Smart Monitoring Procedures ... 14
2.1 Overview and Final Development Details .. 14
2.2 Security and Data Collection ... 15
2.3 Integration and Interfaces .. 16
2.3.1 APIs and Format Exposed Through Interfaces ... 16
2.4 Changes and Debugging from IT-1 to IT-2 .. 19
3 Pre-Processing Module ... 21
3.1 Overview and Final Development Details .. 21
3.2 Security and Data Collection ... 22
3.3 Integration and Interfaces .. 23
3.4 Access Control and Permissions ... 24
3.5 Changes and Debugging from IT-1 to IT-2 .. 25
4 Common Knowledge Base Module .. 26
4.1 Overview, Rationale and Development Details ... 26
4.2 Security and Data Collection ... 28
4.3 Integration and Interfaces .. 28
4.3.1 APIs and Format Exposed Through Interfaces ... 29
4.3.2 Access Control and Permissions ... 29
4.3.3 Changes and Debugging from IT-1 to IT-2 .. 30
5 Reliability, Trust, and Resilience Provisioning Framework 32
5.1 Overview .. 32
5.2 Final Development Details ... 33
5.3 RTR Architecture and Core Workflow ... 33
5.4 Security and Data Collection ... 34
5.5 Integration and Interfaces .. 34
5.6 RTR API Endpoints ... 36

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 6 of 61 © 2023-2025 HORSE

5.7 Technical Implementation and Deployment .. 37
5.8 Deployment, Operation and Maintenance Guidelines ... 38
5.9 Changes and Debugging from IT-1 to IT-2 .. 38
6 End-to-End Proactive Secure Connectivity Manager ... 40
6.1 Overview .. 40
6.1.1 Central Coordination and Observability ... 41
6.1.2 Topology Information Management ... 41
6.1.3 Management of NFV and Applicative Services ... 41
6.1.4 Data Homogenization and Simplification ... 42
6.1.5 Meta-Actions for Security .. 42
6.1.6 Blueprint Profiles ... 42
6.1.7 Modular Architecture ... 42
6.1.8 Integration with Domain Orchestrators .. 42
6.2 Integration and Interfaces .. 43
6.2.1 APIs and Format Exposed Through Interfaces ... 43

6.2.1.1 Topology .. 44
6.2.1.2 Topology – VIM ... 44
6.2.1.3 Topology – Network .. 45
6.2.1.4 Topology – Router ... 45
6.2.1.5 Topology – Kubernetes ... 45
6.2.1.6 Blueprint .. 46

6.2.2 Access Control and Permissions ... 46
6.3 Deployment, Operation and Maintenance Guidelines ... 47
6.4 Changes and Debugging from IT-1 to IT-2 .. 47
6.4.1 Major Architectural Changes ... 49
7 Domain Orchestrator Connectors .. 51
7.1 Overview .. 51
7.2 Main Functionalities ... 52
7.3 Integration and Interfaces .. 52
7.4 API Functionality and Interfaces .. 52
7.5 Changes and Debugging from IT-1 to IT-2 .. 53
8 Compliance Assessment Procedures .. 55
8.1 Overview and Final Development Details .. 55
8.2 Changes and Debugging from IT-1 to IT-2 .. 58
9 Discussion .. 59
9.1 Achievements of WP4 ... 59
9.2 Integration with WP5 ... 59
References .. 61

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 7 of 61 © 2023-2025 HORSE

List of figures
Figure 1.1 HORSE Components Interfaces .. 11
Figure 2.1 Smart Monitoring component highlighted in the HORSE architecture 14
Figure 2.2 Example API result for UEs location .. 17
Figure 2.3 Example Kibana dev querying ... 17
Figure 2.4 Example Kibana dashboards for visualisation ... 18
Figure 3.1 The Pre-Processing component within the HORSE architecture 22
Figure 3.2 Screenshot of Execution of the Pre-processing Module ... 24
Figure 3.3 Screenshot of DFF UI, displaying page where the user can manage his subscriptions

(adding, deleting, and editing their parameters). .. 25
Figure 4.1 The Common Knowledge Base component within the HORSE architecture 26
Figure 4.2 High level architecture of CKB component. ... 27
Figure 5.1 The RTR component within the HORSE architecture ... 32
Figure 5.2 Overview of the RTR API Workflow .. 36
Figure 5.3 Screenshot of RTR API Documentation (FastAPI /docs). Automatically generated API

documentation from FastAPI's /docs endpoint, illustrating the available API endpoints and their
specifications. ... 37

Figure 6.1 The ePEM module highlighted within the HORSE architecture .. 41
Figure 7.1 The DOC component within the HORSE architecture .. 51
Figure 7.2 DOC API endpoints .. 53
Figure 8.1 The CAS component within the HORSE architecture ... 55
Figure 8.2 Example input for CAS to validate showcasing the action and fields 56
Figure 8.3 Example result for full compliance ... 56
Figure 8.4 Example result for partial compliance .. 56
Figure 8.5 Example result for zero compliance ... 56
Figure 8.6 Example result for suspicious mitigation action ... 56

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 8 of 61 © 2023-2025 HORSE

List of tables
Table 2.1 SM’s data access control matrix ... 18
Table 6.1 ePEM’s API endpoints (Topology) .. 44
Table 6.2 ePEM’s API endpoints (Topology - VIM) .. 44
Table 6.3 ePEM’s API endpoints (Topology - Network) .. 45
Table 6.4 ePEM’s API endpoints (Topology - Router) .. 45
Table 6.5 ePEM’s API endpoints (Topology - Kubernetes) .. 45
Table 6.6 ePEM’s API endpoints (Blueprint) ... 46

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 9 of 61 © 2023-2025 HORSE

Abbreviations
API Application Programming Interface

CAS Compliance Assessment Procedures

CKB Common Knowledge Base

CNIT Consorzio Nazionale Interuniversitario per le Telecomunicazioni

DFF Data Fusion Framework

DEME Decision-Making Engine

DOC Domain Orchestrator Connectors

DT Digital Twin

ePEM End-to-End Proactive Secure Connectivity Manager

GDPR General Data Protection Regulation

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IBI Intent-Based Interface

IDPS Intrusion Detection and Prevention System

IMEI International Mobile Equipment Identity

IT-1 Implementation Target 1

IT-2 Implementation Target 2

JSON JavaScript Object Notation

K8S Kubernetes

LLM Large Language Model

LCM Lifecycle Management

ML Machine Learning

NLP Natural Language Processing

NFV Network Function Virtualization

OPA Open Policy Agent

PAG Privacy-Aware Gateway

PCAP Packet Capture

PII Personally Identifiable Information

RBAC Role-Based Access Control

REST Representational State Transfer

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 10 of 61 © 2023-2025 HORSE

RTR Reliability, Trust, and Resilience Provisioning Framework

SM Smart Monitoring

SNS Smart Networks and Services

SR Source Routing

STS Secure Trustable Services

TCP Transmission Control Protocol

TLS Transport Layer Security

UE User Equipment

VIM Virtualized Infrastructure Manager

VNF Virtualized Network Function

VyOS Virtual Operating System (open-source network OS)

WP Work Package

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 11 of 61 © 2023-2025 HORSE

1 About this Document

1.1 Role of this Document
The deliverable, "HORSE AI-assisted Human-centric Secure and Trustable Orchestration (IT-
2)", serves as the final technical report for Work Package 4 (WP4) within the HORSE project.
As a continuation of D4.1, this deliverable documents the refined, debugged, and fully
developed versions of the AI-assisted human-centric secure and trustable orchestration
components, achieving in the second iteration (IT-2) of the project. These components,
illustrated in Figure 1.1 (highlighted by the red box), include:

• Smart Monitoring Procedures
• Pre-processing Module
• Common Knowledge Base Module
• Reliability, Trust, and Resilience Provisioning Framework
• End-to-End Proactive Secure Connectivity Manager
• Domain Orchestrator Connectors
• Compliance Assessment Procedures

This document details the advancements, debugging efforts, and integration readiness of
these components, incorporating feedback from preliminary integration and validation tasks in
WP5. The document ensures transparency, accountability, and traceability by providing a
comprehensive overview of the technical enhancements, security measures, and operational
guidelines, culminating in a robust, secure, and human-centric orchestration platform ready for
final integration in WP5.

Figure 1.1 HORSE Components Interfaces

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 12 of 61 © 2023-2025 HORSE

1.2 Relationship to other HORSE deliverables
D4.2 builds on D4.1 and maintains strong interconnections with other HORSE project
deliverables, including:

• Deliverable D2.4 – HORSE Architectural Design (IT-2): D2.4 provides the final
architectural framework, guiding the development and integration of D4.2 components.
The introduction of the Common Knowledge Base Module in D4.2 addresses a gap
identified in the updated architecture of D2.4.

• Deliverable D3.2 – HORSE Platform Intelligence developed (IT-2): D3.2 enhances
the platform’s intelligence, complementing the secure orchestration components of
D4.2 to enable advanced AI-driven functionalities.

• Deliverable D4.1 – HORSE AI-assisted Human-centric Secure and Trustable
Orchestration developed (IT-1): D4.2 refines and completes the components
introduced in D4.1, incorporating debugging and enhancements based on WP5
feedback.

• Deliverable D5.2 – HORSE Platform Integration and Validation (IT-2): D4.2
provides the fully developed components required for final integration and validation in
D5.2, ensuring operational readiness.

These relationships highlight the iterative and interconnected nature of the HORSE project,
with D4.2 serving as a critical milestone in delivering mature components for the platform.

1.3 Structure of the Document
The document is structured to provide a detailed account of the final development, debugging,
and integration of the AI-assisted human-centric secure and trustable orchestration
components. Each chapter of the document describes a component of the AI Secure and
Trustable Orchestration component and are organized as follows:

Chapter 2: Smart Monitoring Procedures

This chapter details the final development of the Smart Monitoring Procedures, including the
shift from the initial Everest plan to a more dynamic approach. It covers the purpose, integration
details (e.g., APIs for Elastic and UE location sharing), access control, and changes from IT-1
to IT-2.

Chapter 3: Pre-processing Module

This section examines the finalized Pre-processing Module, detailing its development, security
protocols, integration interfaces, access control, and debugging efforts from IT-1 to IT-2.

Chapter 4: Common Knowledge Base Module

This chapter introduces the Common Knowledge Base Module, a new component addressing
an architectural gap identified in D2.4. It covers the module’s GenAI-powered design,
development using a Python framework, security measures (e.g., API server, Pydantic models,
.env files), RESTful API integration, and debugging efforts.

Chapter 5: Reliability, Trust, and Resilience Provisioning Framework

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 13 of 61 © 2023-2025 HORSE

This chapter details the finalized framework, including its development, security measures,
integration interfaces, access control, deployment guidelines, and changes from IT-1 to IT-2.

Chapter 6: End-to-End Proactive Secure Connectivity Manager

This section focuses on the finalized Connectivity Manager, covering its development, security
protocols, integration interfaces, access control, deployment guidelines, and debugging from
IT-1 to IT-2.

Chapter 7: Domain Orchestrator Connectors

This chapter elaborates on the finalized Domain Orchestrator Connectors, detailing their
functionalities, northbound interfaces, resource management, distributed multicluster support,
and changes from IT-1 to IT-2.

Chapter 8: Compliance Assessment Procedures

This section covers the fully developed Compliance Assessment Procedures, including their
purpose, pipeline, decision-making process, integration with monitoring mechanisms (e.g., IBI,
DEME), blackbox nature, and debugging from IT-1 to IT-2.

Chapter 9: Discussion

The final chapter synthesizes WP4’s achievements, highlighting the integration with other
components of the HORSE project, and their contributions to the HORSE platform’s broader
objectives.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 14 of 61 © 2023-2025 HORSE

2 Smart Monitoring Procedures
Smart Monitoring (SM) is a pivotal component within the HORSE platform, giving us
comprehensive oversight of the whole ecosystem. Its main job involves continuously gathering,
processing, and securely storing critical operational and security-relevant information. This
comprehensive approach to data collection and analysis is essential for achieving high-yield
network observability, particularly in advanced network environments such as those
envisioned for 6G, where techniques like SRv6-INT enabled network monitoring and
measurement are becoming increasingly relevant [2].

SM acts like a hub, collecting data from diverse sources and then exposing this processed
information to other HORSE components. These components, are designed to interact with
various data spaces (we call them Indexes inside ElasticSearch) to make sure data delivery is
robust and structured. The insights we get from this collected information are crucial for
HORSE, offering vital understanding of both the deployed ecosystem's structure and, even
more importantly, its current operational state. Within HORSE architecture SM acts mainly as
a data provider and holder for several components.

Figure 2.1 Smart Monitoring component highlighted in the HORSE architecture

2.1 Overview and Final Development Details
The HORSE platform is fundamentally subjected upon the efficient and secure management
of its critical data, which includes network traffic, system logs, and internal feedback. This
information is often disparate and widely distributed, a challenge that SM is specifically
designed to address [3]. SM establishes a unified collection point for HORSE, providing
comprehensive monitoring data within the demanding context 6G environment. Given the
immense volume of data in these advanced network spaces and the imperative to prevent data
loss (especially from a security perspective) SM's role in collecting data from various system
points and offering a secure interface for critical data storage is important.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 15 of 61 © 2023-2025 HORSE

The architectural changes of Smart Monitoring reflects a strategic adaptation to the dynamic
requirements of the HORSE platform. Initially, the approach considered leveraging Sphynx’s
EVEREST. However, a thorough analysis of system needs led to the decision that SM's role
should be more dynamic. By focusing on the ingestion of raw data and integrating the Pre-
processing module as a "bridge" to the main architecture. This design ensures that SM can
operate without requiring real-time knowledge of the system's active components. This
strategic decoupling allows SM to specialize in high-volume, high-velocity data ingestion,
fundamental formatting (for ElasticSearch), and of course storage. The Pre-processing
module, acting as the "bridge" then handles the dynamic transformation and standardization
of this data based on the current requirements of downstream modules, such as DEME and
DT. This architectural refinement enhances the overall scalability and resilience of the HORSE
system.

The data types collected and managed by SM are selected for their strategic value within the
HORSE ecosystem:

• PCAP data: Packet capture (pcap) data is critical for any system that monitors and
makes decisions associated with network traffic. SM is responsible for fetching,
processing and of course storing pcap data in a readable format that can be easily
consumed by most tools.

• PCAP data anonymized: To ensure a future-proof solution and address data privacy,
SM integrates with the Privacy-Aware Gateway (PAG) within HORSE. This
collaboration maintains an anonymized version of the data, with the objective of
enabling its broader utilization.

• IMEI data: SM exposes and serves information about the ever-changing ecosystem,
particularly concerning International Mobile Equipment Identity (IMEI) data. This allows
HORSE components to take advantage of this information for more sophisticated
decision-making based on the connected devices.

• Analytics data: Analytics play a vital role in HORSE. SM is utilized to store analytics
data generated and used to train the artificial intelligence components within HORSE
(specifically DEME and DT). This data is crucial for re-training purposes or for
diagnosing issues that may have occurred during the training process.

The operational framework of Smart Monitoring is fundamentally built around ElasticSearch
and its robust integration capabilities. ElasticSearch serves as the core data store and indexing
engine, facilitating the efficient collection, processing, and storage of all aforementioned data
types, ensuring their rapid accessibility for querying and analysis. SM incorporates various
methods for capturing and processing data to ensure fast indexing, which is a major factor in
the performance of live systems.

2.2 Security and Data Collection
Security is a fundamental design principle embedded within the SM component, handling every
stage of the data lifecycle from collection to storage and sharing within HORSE. A primary
objective is to minimize data exposure, ensuring that sensitive information is protected at all
times.

The initial layer of security focuses on secure data ingress. Each endpoint feeding data into
Smart Monitoring is either co-located on the same Virtual Machine or connected via HTTPS,
ensuring secure data transfer between components [4]. Furthermore, security extends to the
data itself through SM's crucial connection with the PAG, which provides anonymized data for
use. For each data type, the objective is to ensure it is securely processed, stored, and shared
within HORSE.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 16 of 61 © 2023-2025 HORSE

A detailed analysis of how each individual data category is monitored, collected, processed,
and stored within SM is provided below:

• pcap_data: Pcap data collection begins with capturing PCAP files using tools like
TCPDump, which log events occurring on HORSE. The established procedure dictates
that components and devices produces PCAP file with a one-minute lifespan for
processing and saving, before the next file takes its place. PCAP files provide vital
information for identifying potential attacks. These data are then transformed by SM
into a digestible format, which is subsequently saved into ElasticSearch, making the
data indexable and searchable by authorized users. Providing an indexable form is
crucial as it enables the execution of complex queries, delivering vital information to
the rest of the system.

• pcap_data_anonymization: The importance of data anonymization has been
previously mentioned. It is essential to note that anonymization requires the data to
have been transformed into the digestible Elastic format (JSON in this case) to facilitate
a faster and easier anonymization process.

• imei_data: Each HORSE release will involve different devices connected to the
network, and HORSE must be able to identify these devices for critical decision-
making. SM tracks these devices and provides a mechanism for HORSE components
to access this data. This information is provided by the host of the HORSE system, as
Smart Monitoring is agnostic to the specific devices connected and relies on this
external provision.

• analytics_data: This category comprises accumulated data generated by the Pre-
processing module based on the PCAP data provided. Generally, these data are
related to the training of the machine learning components of HORSE (DEME and DT).

2.3 Integration and Interfaces
Smart Monitoring's design positions it primarily as an "observer" rather than an "actor" within
the HORSE ecosystem, which simplifies its integration into the broader platform. While SM
plays a vital role in HORSE, it is designed to adapt to the system's existing architecture rather
than requiring the system to adapt to it. As other components and parts of HORSE extract
information from Smart Monitoring, it offers dedicated interfaces for direct communication.

2.3.1 APIs and Format Exposed Through Interfaces
Smart Monitoring provides a suite of APIs tailored to the specific data consumption needs of
the HORSE platform. These interfaces offer three distinct mechanisms for interaction:

• RESTful API: SM exposes a dedicated RESTful API for specific data queries. An
example includes functionality to "fetch connected devices location within the network"
where Smart Monitoring exposes the location of UEs within the network. Access to this
sensitive information is strictly controlled and limited only to whitelisted IP addresses.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 17 of 61 © 2023-2025 HORSE

Figure 2.2 Example API result for UEs location

• Kibana for data visualization and management: Recognizing the critical importance
of rapid data visualization and statistical analysis for informed decision-making in a
dynamic system, SM incorporates Kibana. This integration grants users with
appropriate permissions the ability to observe system operations at a higher level,
facilitating quick insights into operational metrics, security events, and data trends.
o Kibana provides an intuitive way to query and view specific data saved in the

ElasticSearch environment

Figure 2.3 Example Kibana dev querying

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 18 of 61 © 2023-2025 HORSE

o As well as intuitive dashboards for the overall overview of the SM.

Figure 2.4 Example Kibana dashboards for visualisation

• ElasticSearch API for direct read/write access: SM internally reads and writes data
to ElasticSearch for fast querying and indexing. Additionally, SM provides a direct
interface to these ElasticSearch indexes (individual data partitions). This allows specific
users or components, granted precise permissions based on their role within HORSE,
to directly access these data segments. By providing direct access to ElasticSearch,
components are empowered to perform new queries without the need for an
intermediary.Access Control and Permissions [5].

Given that Smart Monitoring serves as the repository for critical and potentially sensitive
operational and security data, the implementation of a strict access control protocol is
important. This protocol ensures data integrity, confidentiality and availability, ensuring that
only authorized components and users can access specific data sets.

The access control mechanisms are multi-layered:

• API Whitelisting: For the API, access requires whitelisting to retrieve UE locations.
This enables robust data handling and ensures that only whitelisted components can
access sensitive information, significantly enhancing data handling security.

• Principle of Least Privilege for Data Access: Adhering to the principle of least
privilege, data collected and stored within Smart Monitoring is not universally
accessible. Instead, each user is granted access only to the data necessary for their
specific process.

• Role-Based Access Control (RBAC) for Indexes: Direct access to ElasticSearch
indexes is governed by a sophisticated RBAC system. This ensures that permissions
are assigned based on the defined roles of partners and components within the HORSE
consortium, allowing for precise management of read and write privileges across
different data categories [6].

Table 2.1 provides a comprehensive overview of the current data access control matrix,
detailing the permissions granted to each partner for various data indexes within the Smart
Monitoring component.

Table 2.1 SM’s data access control matrix

Component/Data pcap_data anonym_index imei_index analytics_index

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 19 of 61 © 2023-2025 HORSE

SM Read, Write - - -

PAG Read Read, Write Read -

Pre-processing Read - - Read, Write

DEME - - - Read

TESTBED Read, Write - Read, Write -

TESTBED Read, Write - Read, Write -

TESTBED Read, Write - Read, Write -

2.4 Changes and Debugging from IT-1 to IT-2
The way Smart Monitoring developed from IT-1 to IT-2 shows a dynamic and adaptive
evolution, driven by constantly looking at system needs and what we learned from debugging.
Since HORSE started, Smart Monitoring's purpose and how it approaches the solution has
changed quite a bit. This change, it has really matured SM, making it a much more central and
pivotal component within the HORSE architecture.

Key evolutionary changes and specific additions from IT-1 to IT-2 include:

• Centralized Architectural Role: Smart Monitoring became a more centralized point
of the architecture, underscoring its increased importance as a data hub for the
ecosystem and consolidating monitoring capabilities.

• Enhanced Data Accessibility:
• UE Location Information: A specific and valuable addition was the implementation of

a mechanism for components to retrieve the location of User UEs within the network.
This capability, exposed via a dedicated RESTful API, provides critical context for
security analysis and resource management.

• Expansion of Indexed Data: The scope of data managed by Smart Monitoring
significantly expanded with the introduction of additional indexes for collected,
processed, and served data. These new indexes accommodate a broader range of
data types, reflecting the evolving information requirements of HORSE's various
functionalities.

• Granular Access Control Implementation: A critical security enhancement was the
robust implementation of access control for each individual user. This ensures that data
access is strictly managed based on roles and necessity, significantly bolstering the
security posture of the sensitive data residing within SM.

The evolution of SM from IT-1 to IT-2, particularly its centralization, directly addresses the
challenges of handling massive, real-time, and diverse data streams characteristic of 6G
environment. The initial architectural choices in IT-1 presented bottlenecks in managing the
volume, velocity, and variety of data. The shift to a centralized aggregation point simplifies data
ingestion, while the Pre-processing bridge offloads complex transformations, improving overall
system throughput and scalability. The expansion of indexed data accommodates the
increasing diversity of information, and the robust access control ensures secure governance

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 20 of 61 © 2023-2025 HORSE

of this growing dataset. These developments, informed by iterative debugging and integration
insights, position SM as a resilient and high-performance data backbone, fully prepared to
meet the rigorous demands of the HORSE platform.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 21 of 61 © 2023-2025 HORSE

3 Pre-Processing Module

3.1 Overview and Final Development Details
The Pre-processing Module in the HORSE architecture (Figure 3.1) serves as a critical
intermediary, harmonizing and standardizing raw data from the Smart Monitoring (SM)
component for subsequent analytical processes. This module is responsible for extracting
data from the Elasticsearch database of the SM component and then pre-processing it to
clean and restructure the information according to the needs of the consuming software
components. This rigorous approach to data preparation is essential for efficient and
reliable knowledge discovery from complex datasets, aligning with the principles discussed
in general reviews on data preprocessing techniques [7]. After the pre-processing
procedure is complete, the data is stored back into the Elasticsearch DB, within the
"analytics_index" (displayed in Table 2.1) for easy future access, and directly sent to the
consumer, which is the next component in the HORSE workflow. In the IT-2 iteration, the
module underwent significant enhancements to improve performance, reliability, and
integration capabilities. Key developments include:

• Error Correction Functionality: Robust error-handling mechanisms were
implemented to address inconsistencies in data payloads. The module now validates
incoming data against predefined JSON schemas, flagging and correcting malformed
or incomplete datasets to ensure data integrity before processing.

• Code Optimization: The codebase was optimized for performance, reducing
processing latency and improving throughput. This involved streamlining data parsing
algorithms and optimizing interactions with the Data Fusion Framework (DFF) platform,
from which the Pre-processing Module is derived. The Pre-processing Module is a
performance-optimized subset of DFF, tailored specifically for the HORSE platform’s
real-time and security requirements, resulting in faster data harmonization and
scalability for high-volume data streams.

• Dual Data Output: The module now supports immediate data sharing with the Detector
and Mitigation Engine (DEME) component for real-time processing, while
simultaneously storing processed results in a specialized index within the SM
component’s Elasticsearch instance. This dual-output approach enhances data
availability for both real-time and historical analysis.

• Containerized Execution: The module is now deployed in a containerized
environment (e.g., Docker), ensuring isolation and controlled communication with
external components. This enhances security and simplifies deployment across diverse
infrastructures.

These advancements ensure that the Pre-processing Module delivers reliable, efficient, and
scalable data preprocessing pipelines, fully aligned with the HORSE platform’s objectives.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 22 of 61 © 2023-2025 HORSE

Figure 3.1 The Pre-Processing component within the HORSE architecture

3.2 Security and Data Collection
Security remains a cornerstone of the Pre-processing Module, with IT-2 introducing enhanced
measures to protect data during collection, transmission, and processing. The module
continues to integrate with the SM component via Elastic Beats, leveraging HTTPS for secure
data transmission to maintain confidentiality and integrity. Additional security enhancements
include:

• Containerized Environment: The module operates within a containerized
environment, communicating only through monitored ports and endpoints. This
minimizes the attack surface by restricting interactions to predefined, secure channels.

• Data Validation and Sanitization: Enhanced schema verification ensures that only
valid JSON data is processed. Input sanitization prevents injection attacks, and any
anomalous data triggers alerts for further inspection.

• DFF Platform Security: The Pre-processing Module inherits core security
mechanisms from the DFF platform, which has undergone multiple rounds of security
auditing. While it does not expose a graphical user interface (GUI) or allow dynamic
pipeline creation by end users (as in the full DFF), it leverages the same secure data
handling libraries and OAuth2.0-based authentication model. In the HORSE context,
pipeline configurations are managed centrally and deployed securely as part of the
containerized module. This provides the privilege of easily creating and managing data
pipelines for the HORSE platform by authorized users.

• Compliance with Regulations: The module adheres to GDPR and other data
protection standards, applying anonymization and data minimization principles to
eliminate risks of privacy breaches.

These measures ensure that the Pre-processing Module maintains robust cybersecurity,
safeguarding data throughout the preprocessing pipeline.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 23 of 61 © 2023-2025 HORSE

3.3 Integration and Interfaces
 The Pre-processing Module is a performance-optimized subset of the DFF platform. While it
does not expose a GUI within the containerized deployment used in HORSE, authorized users
can still use the secure GUI of the full DFF platform to configure data pipelines. These
configurations are exported and deployed to the Pre-processing Module, ensuring alignment
between user-defined flows and the module’s hardened backend execution engine.

The Data Fusion Framework (DFF) is a web-based platform that enables authenticated users
to design and configure custom data pipelines via a GUI. These pipelines define the data flow
from various source databases (e.g., relational, NoSQL, Elasticsearch) to target endpoints
(e.g., APIs). Once configured, pipelines are executed by the DFF backend, which handles
runtime tasks such as data querying, transformation, and delivery to the defined endpoints.
This dual architecture—interactive GUI configuration combined with robust backend
execution—ensures both flexibility and scalability in production environments.

The Pre-processing Module is a streamlined version of the DFF platform, optimized to meet
the performance, security, and responsiveness requirements of the HORSE platform. Although
the secure DFF GUI remains available for authorized users to define and configure pipelines,
the backend engine of the Pre-processing Module has been trimmed down and fine-tuned for
minimal latency, efficient resource use, and seamless integration in containerized
environments. It retains DFF’s core capabilities—such as data querying, transformation, and
forwarding—while eliminating unnecessary overhead to better serve HORSE’s real-time and
security-focused architecture.

IT-2 enhancements improve integration reliability and responsiveness:

• Data Ingestion: The module uses HTTP requests to ingest JSON-formatted data from
the SM component. Enhanced error handling ensures that mismatched payloads are
flagged and corrected, with resilience strategies such as retry mechanisms for
unresponsive endpoints.

• Data Retrieval and Storage API: The module retrieves data from the SM component
using HTTP GET requests and stores processed results in a specialized Elasticsearch
index within the SM component. This index supports historical queries and analytics.

• Immediate Data Sharing with DEME: Processed data is transmitted directly to the
DEME component via a dedicated API, enabling real-time decision-making. The API
uses JSON for interoperability and supports high-frequency data streams.

• Resilience Strategies: To address endpoint unresponsiveness, the module
implements retry logic (e.g., exponential backoff) and message reconfiguration (e.g.,
adjusting payload formats) to ensure reliable communication. These strategies were
developed based on debugging insights from IT-1.

• Standardized Data Formats: Input data from the SM component adheres to a
standardized format via Elastic Beats, while output data (to DEME and SM index) uses
JSON for consistency and ease of parsing.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 24 of 61 © 2023-2025 HORSE

Figure 3.2 Screenshot of Execution of the Pre-processing Module

3.4 Access Control and Permissions
Access to the Pre-processing Module is tightly controlled to ensure data security and integrity,
with IT-2 refinements enhancing granularity and robustness:

• DFF API Security: API endpoints require token-based authentication, with each
request validated to prevent unauthorized access. RBAC assigns permissions based
on user roles, restricting sensitive operations (e.g., data uploads) to authorized entities.

• GUI Access Controls: Access to the DFF GUI is restricted to authenticated users
through the HORSE IAM system, which ensures that only authorized individuals can
define or modify data pipelines. The GUI allows users to visually construct data
processing flows by selecting data sources, configuring preprocessing logic (e.g.,
filtering, transformation), and specifying output targets. Once submitted, these
configurations are stored and picked up by the DFF backend engine for execution.
Figure 3.3 illustrates the DFF pipeline configuration interface, showcasing source
selection, transformation steps, and destination settings.

• Containerized Communication: The containerized environment restricts
communication to specific, monitored ports, ensuring that only authorized components
(e.g., SM, DEME, DFF) can interact with the module.

• Data Access for Storage: Write access to the SM component’s Elasticsearch index is
restricted to the Pre-processing Module, with read access granted to authorized
analytics components via RBAC policies.

These controls ensure that only authenticated and authorized entities interact with the module,
maintaining data security and operational integrity.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 25 of 61 © 2023-2025 HORSE

Figure 3.3 Screenshot of DFF UI, displaying page where the user can manage his subscriptions (adding,
deleting, and editing their parameters).

3.5 Changes and Debugging from IT-1 to IT-2
 The transition from IT-1 to IT-2 involved extensive debugging and targeted enhancements
based on issues identified during the initial integration phase conducted in WP5.

• Payload Mismatch Handling: Debugging activities revealed frequent payload
mismatches originating from the SM component. In IT-2, enhanced schema validation
and automatic error correction mechanisms were introduced to resolve format
inconsistencies, reducing processing errors.

• Pipeline Responsiveness: In IT-1, certain execution flows experienced delays due to
the rigid handling of pipeline inputs and data inconsistencies. IT-2 improved internal
flow control and implemented retry mechanisms and payload adjustment strategies
within the Pre-processing Module, ensuring smoother execution even under fluctuating
input conditions.

• Performance Optimization: Performance bottlenecks observed in IT-1 were mitigated
through code refactoring, optimizing both data parsing routines and inter-component
communication. These improvements reduced processing latency by approximately
20%.

• Security Enhancements: Migrating to a containerized environment resolved IT-1
security vulnerabilities, particularly those related to open ports. The introduction of
monitored and isolated execution environments further minimized the risk of
unauthorized access.

• Dual Output Implementation: Feedback from IT-1 highlighted the need to support
both real-time and historical data access. IT-2 introduced simultaneous data forwarding
to DEME and persistent storage in the SM index, thereby enhancing overall system
flexibility.

These modifications, validated through WP5 integration tests, ensure that the Pre-processing
Module is robust, efficient, and fully prepared for final deployment in the HORSE platform.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 26 of 61 © 2023-2025 HORSE

4 Common Knowledge Base Module
Initially, the Common Knowledge Base (CKB) was not part of the HORSE architecture.
However, during the development process, we identified a gap in the architecture, as
documented in Deliverable D2.4, Landscape and Architectural Design. To address this gap,
we decided to implement and integrate a dedicated component to centrally store and provide
essential information on attacks and mitigations.

The rationale behind this addition lies in the need for multiple components, such as the IBI and
EM modules, to access consistent and accurate data on attacks and countermeasures. To
eliminate data redundancy and ensure a single source of truth, the CKB was established as a
centralized repository. Thanks to its API Service, the CKB can now be securely accessed by
any HORSE component via REST APIs.

4.1 Overview, Rationale and Development Details
 The CKB is a pivotal component within the HORSE architecture, leveraging Generative AI
(GenAI) to proactively address emerging threats. Its modular design, built on an extensible
Python framework, ensures independent and scalable functionality, enabling efficient
maintenance, testing, and flexible deployment of its subcomponents. The CKB seamlessly
integrates with other HORSE components via REST APIs, supporting comprehensive threat
intelligence queries. By harnessing GenAI capabilities, it synthesizes and correlates data from
diverse external sources, autonomously updating knowledge base entries and generating
tailored mitigation strategies based on specific attack patterns. Furthermore, the CKB
incorporates advanced prioritization features for countermeasures. It utilizes Large Language
Models (LLMs) to evaluate risks, analyze attack patterns, and rank mitigation actions
according to severity and potential impact. This approach ensures that HORSE remains
responsive and adaptive to evolving cybersecurity challenges.

Figure 4.1 The Common Knowledge Base component within the HORSE architecture

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 27 of 61 © 2023-2025 HORSE

The CKB’s architecture consists of multiple components, each designed to optimize data
management and integration within the HORSE framework.

• The centralized database serves as a structured storage system, ensuring secure
and high-performance management of data related to threats and mitigation
techniques. It is specifically optimized for rapid querying and scalability.

• The Dynamic Attack Resolver is composed of several Python modules designed to
aggregate data from external sources to identify newly documented attack patterns and
mitigation actions. It includes a data preprocessing pipeline to prepare the collected
information as input for LLMs, ensuring that the data is consistently formatted and
accurate.

• The Mitigation Generator is a Python module designed to leverage generative AI to
enhance the processed data, resulting in a comprehensive list of attacks and
mitigations, as well as a recommended order of execution for these mitigation
strategies and a text description.

• The API Service provides a REST API-based interface that facilitates seamless
interoperability with other HORSE components, allowing them to access the data
stored in the CKB without compromising security.

The CKB is implemented using a modular and extensible Python framework aimed at
improving maintainability, scalability, and flexibility in cybersecurity data processing within the
HORSE architecture. Each core function is encapsulated within independent Python modules
to support efficient development, testing, and integration.

Figure 4.2 High level architecture of CKB component.

The high-level architecture of the CKB component, depicted in Figure 4.2, illustrates how its
modular design supports robust data processing and integration. For instance, the Dynamic
Attack Resolver plays a central role in gathering cybersecurity knowledge by connecting to
trusted external sources. It identifies and extracts attack patterns and corresponding mitigation
strategies, organizing them through a structured pipeline. This process involves dedicated
modules for searching and structuring the data, which is then exported in a standardized format
(CSV) to ensure compatibility with subsequent stages, such as AI-based processing and
mitigation generation.

The Mitigation Generator uses these structured datasets to dynamically generate prompts for
generative AI models, applying prompt engineering techniques to ensure standardized inputs

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 28 of 61 © 2023-2025 HORSE

and consistent responses. It interacts with LLMs such as Anthropic’s Claude or Meta’s Llama
through a dedicated API handling module, either submitting the prompts to a locally running
Ollama server or using external APIs. The module then manages the submission and retrieval
of responses and systematically stores the results in the centralized database.

An evaluation-specific module works in parallel to assess the outputs generated by the
LLMs. This module follows the innovative LLM-as-a-Judge approach: it creates evaluation
prompts that are processed by more advanced LLMs, using the generated mitigations as inputs
[8]. The evaluation process provides quantitative ratings along with detailed qualitative
explanations, which facilitate human-in-the-loop validation by cybersecurity experts.

Once the database is populated, the API Service exposes REST APIs, allowing HORSE
components to access the enriched data. This approach ensures the data remains up-to-date
while maintaining secure and efficient access.

4.2 Security and Data Collection
 This section outlines the approach adopted for data collection within the CKB module while
ensuring compliance with security protocols, especially when handling potentially sensitive
information.

First and foremost, the CKB does not process or store any personal or sensitive data, such as
Personally Identifiable Information (PII) or financial records. Consequently, there is no need
for data encryption within the database itself. All data interactions and queries are exclusively
managed through a dedicated API server, strategically positioned between the database and
external users (HORSE components).

This architecture mitigates the risk of data tampering by preventing direct database access.
Even if an attacker impersonates a HORSE component, they cannot insert misleading
information into the database, as all requests are processed through the secure API server.
To further enhance security, the API server performs rigorous input validation and sanitization
to prevent data injection attacks. This process is efficiently managed using Pydantic models,
which enforce strict input/output schema validation, ensuring data integrity by design.

The connection between the API server and the database is secured via authentication,
requiring a username and password. These credentials are managed securely using .env files,
which facilitate the separation of sensitive configurations from the codebase, avoiding
hardcoding secrets directly. Additionally, in CI/CD pipelines within GitHub Actions, secrets are
managed using dedicated tools, ensuring that sensitive data is never exposed in public or
private repositories. As a best practice, .env files are listed in the .gitignore file to exclude them
from the shared codebase.

4.3 Integration and Interfaces
To ensure effective interoperability, security, and maintainability within the HORSE
architecture, the CKB has been designed with a focus on clear interface exposure and robust
access control. The system provides well-structured APIs for interacting with the database,
while also implementing best practices. The following sections provide an overview of the
technologies used to expose these interfaces and the mechanisms in place to safeguard data
access.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 29 of 61 © 2023-2025 HORSE

4.3.1 APIs and Format Exposed Through Interfaces

 The CKB exposes REST APIs via its API Service module to enable secure and efficient
communication between HORSE components and the centralized database of attacks and
mitigations. During the design phase, specific frameworks, libraries, and architectural choices
were carefully selected to ensure seamless integration of the CKB into the existing HORSE
infrastructure without disrupting its architecture.

Key Tools and Technologies Used:

• FastAPI:
 The CKB utilizes FastAPI, a modern web framework for building APIs with Python,
leveraging standard Python type hints. FastAPI is ideal for defining clean, standard-
based interfaces that promote good integration practices. Main APIs:

o GET /allattacks: Retrieves the list of all attacks in the database. This endpoint
allows for users to access the entire catalog of attacks and helps them finding
the correct nomenclature for a specific attack.

o POST /mitigations: Retrieves a list of mitigations, including an AI-generated
priority list and a natural language description. The request body must include
the name of the attack.

• Pydantic: To ensure data consistency and validation, the CKB employs Pydantic, a
widely used data validation library in Python. It defines data schemas to validate the
input and output of API requests. Pydantic models also generate JSON schemas,
making them easily integrable with FastAPI.

• Swagger: The API Service leverages Swagger, an integrated tool suite within FastAPI,
to automatically generate visualization and documentation of REST APIs. Through the
OpenAPI specification, users can access an intuitive interface that describes the API
structure and functionality. The Swagger UI also supports API testing, enabling
simulation of requests and responses to facilitate seamless integration with other
HORSE components.

• JSON Format: To maintain consistency and ensure easy parsing and integration with
HORSE components, all API responses and data exchanges use the JSON format.
This standardized serialization method is commonly employed in web applications for
data transmission between servers and clients, offering both human- and machine-
readable outputs.

4.3.2 Access Control and Permissions

To access the API Service that exposes REST APIs for querying the database, robust access
mechanisms and control measures are implemented to ensure security and data integrity.

• Segregation of Duties: The API server and the actual database containing attack and
mitigation information are developed as separate Python modules. This architectural
separation minimizes potential vulnerabilities by limiting direct access to the database.
The database itself is protected, and access is strictly managed through authentication
mechanisms. By segregating responsibilities, the exposure of sensitive data is
significantly reduced.

• Secure Management of Secrets: Sensitive information required to access the
database is securely stored in .env files. To ensure security, database queries are
exclusively performed through the API service, preventing direct interaction with the
database.Principle of Least Privilege (PoLP): Only the minimum necessary
permissions are granted to users and HORSE components when accessing the

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 30 of 61 © 2023-2025 HORSE

database. This practice limits the potential impact of compromised credentials or
malicious actions, as each user or component has access only to the data and functions
they specifically require.

4.3.3 Changes and Debugging from IT-1 to IT-2

The CKB was not part of the initial implementation (IT-1) since its relevance was discussed
and approved only during the first phase of the project. It was officially introduced during the
update of the architecture presented in Deliverable D2.4. Since then, the development of the
CKB has followed an incremental process, undergoing continuous changes and debugging to
ensure smooth integration with existing HORSE components.

Version 1.0 of the CKB:

• Initial Release: The first version of the CKB included two core components: the
database and the API Service. The primary goal was to rapidly deliver a functional
module capable of retrieving mitigation lists for specific attacks.

• Data Population: A curated subset of 10 predefined attacks and their corresponding
mitigations were manually inserted into the database to provide a basic but functional
dataset.

• Generative AI Testing: Early experiments with Generative AI were conducted to
generate mitigation priority rankings and natural language descriptions. This process
was human-curated, both during data generation and the subsequent evaluation
phase.

Version 2.0 of the CKB:

• Enhanced Generative AI Integration: The second version significantly improved the
database content by leveraging Generative AI. The focus was on automating data
collection and enrichment.

• Dynamic Attack Resolver: A major addition was the Dynamic Attack Resolver,
developed in Python, which automatically integrates data from the MITRE ATT&CK
framework. This component populates the database with over 100 attacks, significantly
expanding the initial dataset. The resolver is designed to periodically check for updates
in the MITRE ATT&CK framework and download new data, keeping the CKB
consistently up to date.

• Mitigation Generator Module: A new module was introduced to process the
expanded database, utilizing cutting-edge pre-trained LLMs to:

o Expand mitigation lists
o Generate priority rankings
o Create detailed, context-rich descriptions

• Evaluation and Data Curation: To assess the accuracy of LLM-generated data, the
LLM-as-a-Judge approach was implemented. This method allows for automated
evaluation and selection of the most reliable outputs.

• Data Insertion Module: The best responses generated by the LLMs are transformed
and systematically inserted into the database, making them accessible to all HORSE
components.

Version 3.0 of the CKB:

• Error Handling Improvements: This version focused on addressing integration issues
that arose during interaction with other HORSE components, especially related to
changes in the output JSON format.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 31 of 61 © 2023-2025 HORSE

• Enhanced LLM Utilization: Additional state-of-the-art LLMs were integrated to
improve the consistency and accuracy of generated data, leveraging their ability to
better synthesize complex mitigation strategies.

• Security Enhancements: Updated security measures were introduced to strengthen
access control and authentication mechanisms, safeguarding the CKB against
unauthorized access.

• Performance Optimization: Code refactoring and API interaction improvements led
to more efficient processing and reduced response times. Performance bottlenecks
were addressed through code cleansing and optimization of API calls.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 32 of 61 © 2023-2025 HORSE

5 Reliability, Trust, and Resilience Provisioning
Framework

5.1 Overview
 The Reliability, Trust, and Resilience Provisioning Framework (RTR) is a pivotal component
within the HORSE platform (Figure 5.1), specifically engineered to bolster the security,
reliability, and resilience of AI-assisted human-centric orchestration. Its core function involves
processing high-level security intents originating from the Intent-Based Interface (IBI) and
translating these into actionable mitigation measures, which are subsequently forwarded to the
End-to-End Proactive Secure Connectivity Manager (ePEM). This process directly aligns with
the principles of Intent-Based Networking (IBN), which significantly impacts network
configuration management and security by automating the translation of high-level objectives
into actionable network policies [9]. The RTR module is designed to support diverse input
formats and provides a comprehensive mechanism for tracking the enforcement status of
mitigation actions. The module can process mitigation actions in two different formats: a well-
structured and predetermined JSON schema, and a natural language format. The dual format
input works by initially attempting to validate the inputted mitigation action via the
predetermined JSON schema. If the validation succeeds, it is processed and sent to the next
component of the HORSE workflow, the ePEM. If the mitigation action fails to validate via this
JSON schema, the RTR attempts to translate the command via an advanced NLP mechanism.
If the confidence in the translation of the command is over a certain threshold, the mitigation
action is formatted according to the next component's expected format and sent to it (IBI);
otherwise, a translation error is raised and sent back to the component that originated the
mitigation action.

.

Figure 5.1 The RTR component within the HORSE architecture

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 33 of 61 © 2023-2025 HORSE

5.2 Final Development Details
The IT-2 iteration of the RTR module builds on the IT-1 foundation, incorporating significant
enhancements to improve functionality, performance, and reliability. Key developments
include:

• Error Correction and Handling: Robust error-handling mechanisms were added to
address inconsistencies in IBI inputs. The module validates incoming intents (JSON or
natural language) against predefined schemas, correcting malformed data to ensure
reliable processing.

• Performance Optimization: The codebase was optimized to reduce latency and
improve throughput. Streamlined algorithms for intent parsing and mitigation action
generation, coupled with efficient API interactions, enhance the module’s scalability for
high-volume workloads.

• Advanced NLP Integration: The module now supports advanced NLP techniques,
allowing it to process natural language-based mitigation intents from the IBI (in the
advanced version). These intents are translated into structured JSON mitigation
actions and corresponding Ansible commands using a combination of large language
models (LLMs) and predefined schema mappings.

• Mitigation Action State Monitoring: A new mechanism tracks the enforcement state
of mitigation actions, with states including pending, enforced, and failed. The module
logs enforcement results, including messages and timestamps, enabling real-time
monitoring and post-incident analysis.

• Containerized Execution: The module is deployed in a Docker-based containerized
environment, ensuring isolation and secure communication through monitored ports
and endpoints.

These advancements ensure that the RTR module delivers a secure, efficient, and adaptable
framework for threat mitigation within the HORSE platform

5.3 RTR Architecture and Core Workflow
The RTR module exposes well-defined RESTful APIs to facilitate seamless integration within
the HORSE architecture.

• Northbound API (IBI Interaction)

This API serves as the primary interface for receiving mitigation intents from the IBI. It is
designed to be flexible, accommodating both structured and natural language inputs.

• Structured JSON: Accepts mitigation intents conforming to a predefined schema,
specifying parameters such as subnet address, mitigation action type, threat
classification, and timeframes.

• Natural Language: Processes intents expressed in natural language, leveraging the
internal NLP pipeline to extract and map key parameters to structured formats.

• Southbound API (ePEM Interaction)

This API manages the forwarding of translated mitigation actions to ePEM and provides the
mechanism for status updates.

• Action Forwarding: Transmits the translated mitigation actions, which can be in the
form of Ansible Security Playbooks (YAML-based) or structured JSON (aligned with

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 34 of 61 © 2023-2025 HORSE

CACAO Security Playbook standards), to the ePEM module via secure HTTP POST
requests.

• Status Update Endpoint: The RTR component provides an asynchronous status
update endpoint that external orchestrators can call to notify about the execution state
of a requested mitigation action. (e.g., enforced, failed, pending). This endpoint also
allows for the inclusion of descriptive messages.

5.4 Security and Data Collection
Security is paramount in the RTR module, with IT-2 introducing enhanced measures to protect
data and ensure operational integrity. The module continues to use TLS for secure data
transmission between the IBI, ePEM, and itself, safeguarding against interception and
tampering. Additional security enhancements include:

• Containerized Environment: The module operates in a containerized environment,
communicating only through predefined, monitored ports. This minimizes the attack
surface and ensures secure interactions with external components.

• Authentication and Authorization: Token-based authentication validates all API
interactions, while access control lists enforce strict authorization policies. Only
authorized entities (e.g., IBI, ePEM) can initiate or respond to requests.

• Sensitive Data Handling: The module minimizes personally identifiable information
(PII) and applies anonymization techniques. Data retention policies align with GDPR
and other regulatory standards.

• Dynamic Threat Intelligence: Integration with threat intelligence feeds, enriched by
machine learning, enables proactive threat detection and adaptation to emerging risks.

• Logging and Auditing: Comprehensive logs capture all intents, mitigation actions, and
enforcement states, including timestamps and results. Regular audits support forensic
analysis and continuous improvement.

• Data Validation: Enhanced validation ensures that both JSON and natural language
inputs adhere to expected schemas, preventing injection attacks or processing errors.

These measures ensure that the RTR module maintains a robust and trustworthy security
posture.

5.5 Integration and Interfaces
 The RTR module operates as a critical intermediary, ensuring that abstract security intents
are transformed into concrete, executable mitigation actions. The workflow (displayed in Figure
5.2) is meticulously designed to handle various input formats, validate information, translate
contexts, and maintain real-time status updates.

• Input Reception and Secure Communication

The RTR module's primary input originates from the Intent-Based Interface (IBI). Mitigation
actions are received by the RTR API in one of two formats: a structured JSON format or a
natural language format. Communication between the IBI and RTR is secured through a robust
OAuth 2.0 workflow, ensuring authentication, authorization, and the integrity of transmitted
data.

• Mitigation Action Registration

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 35 of 61 © 2023-2025 HORSE

Upon receiving a mitigation action message, the RTR immediately registers this action into its
internal registry. This registry is implemented using a MongoDB database, which serves as a
persistent record of all incoming and processed mitigation actions, along with their evolving
statuses.

• Format Validation and Translation

Following registration, the RTR proceeds to validate the format of the received mitigation
action. This validation step is crucial for ensuring data integrity and correct processing.

• Structured JSON Translation: If the input format is a structured JSON representing
a predefined mitigation action, the RTR translates the context of this action directly into
an Ansible command. This translation is executed based on a set of pre-established
rules that map specific JSON parameters to corresponding Ansible playbook directives.

• Natural Language Processing (NLP) Translation: If the input format is natural
language, the translation process is executed through an advanced Natural Language
Processing (NLP) pipeline. This NLP process is a sophisticated component, part of
which has been detailed and published in academic papers, specifically referenced in
[10]. The NLP pipeline extracts key entities, intents, and contexts from the natural
language input to generate the appropriate Ansible command.

• Action Forwarding and Status Management

Once the translation is complete, the generated mitigation action (in the form of an Ansible
command or structured JSON) is then forwarded to the ePEM module's API. Concurrently, the
status of the mitigation action within the MongoDB registry is updated to reflect its current state
(e.g., "forwarded" or "in progress").

• Status Update Mechanism for ePEM

The RTR API also exposes a dedicated function that allows the ePEM module to update the
status of a specific mitigation action. This update mechanism is vital for maintaining real-time
visibility into the enforcement lifecycle. ePEM can utilize this function to report when an action
has been:

• Enforced: Successfully executed.
• Failed to Execute: Encountered an error during execution.
• Changed Status: Transitioned from "in progress" to any other state.

This API function includes a field for an accompanying message, which can convey an error
message, a success message, or general informational updates regarding the action's
enforcement.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 36 of 61 © 2023-2025 HORSE

Figure 5.2 Overview of the RTR API Workflow

5.6 RTR API Endpoints
The RTR module exposes a set of RESTful API endpoints to manage mitigation actions and
facilitate secure interactions with other components as displayed in Figure 5.2. These
endpoints are built using the FastAPI framework, providing automatic interactive API
documentation.

• /login: This endpoint facilitates user authentication. It typically accepts credentials
(e.g., username and password) and, upon successful validation, returns an
authentication token (e.g., a JWT) that subsequent API requests must include for
authorization.

• /logout: This endpoint allows authenticated users to invalidate their current session
or token, effectively logging them out of the system.

• /register (POST): This function is responsible for receiving and registering new
mitigation actions. It accepts structured JSON or natural language inputs from the IBI,
initiates the registration process in the MongoDB database, and triggers format
validation and translation.

• /action_by_id/{intent_id} (GET): This endpoint allows for the retrieval of a
specific registered mitigation action based on its unique intent_id. It returns the
details of the action, including its current status and any associated messages.

• /actions (GET): This endpoint provides a comprehensive list of all mitigation actions
currently registered in the MongoDB database. It can be used for monitoring and
auditing purposes, offering an overview of all processed and pending actions.

• /update_action_status (POST): This critical endpoint is utilized by the ePEM
module to update the status of a specific mitigation action. It accepts the intent_id
and the new status (e.g., "enforced", "failed", "in_progress"), along with an optional

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 37 of 61 © 2023-2025 HORSE

message (error, success, or info). This ensures real-time tracking of mitigation action
enforcement.

Figure 5.3 Screenshot of RTR API Documentation (FastAPI /docs). Automatically generated API documentation
from FastAPI's /docs endpoint, illustrating the available API endpoints and their specifications.

5.7 Technical Implementation and Deployment
The RTR module is engineered for modern, scalable, and secure deployment, leveraging
contemporary software development practices.

• Framework and Containerization

The application logic for the RTR module is developed using the FastAPI framework, known
for its high performance and ease of use in building APIs with Python (a screenshot of this
FastAPI deployment is shown in Figure 5.3). For deployment and operational consistency, the
entire application is fully containerized using Docker. This ensures that the RTR module, along
with all its dependencies, runs in an isolated and consistent environment. Docker Compose is
utilized to orchestrate the deployment, managing the RTR service, its MongoDB database, and
any other auxiliary services, facilitating easy setup and scaling.

• Security Enhancements

Security is a paramount concern for the RTR module, with multiple layers of protection
integrated into its design and operation:

Secure Communication: All data transmission between the IBI, RTR, and ePEM is secured
through a two-layered approach. Firstly, all communications occur within a secure internal
network, minimizing external exposure. Secondly, an OAuth 2.0 workflow is consistently
applied across all API interactions, providing robust authentication and authorization. This
dual-layer security safeguards against interception, tampering, and unauthorized access.

Containerized Environment: Operating within a Docker container minimizes the attack
surface. The module communicates only through predefined, monitored ports, restricting
unauthorized access.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 38 of 61 © 2023-2025 HORSE

Authentication and Authorization: Token-based authentication validates all API
interactions, ensuring that only authorized entities (e.g., IBI, ePEM) can initiate or respond to
requests. Access control lists (ACLs) enforce strict authorization policies.

Logging and Auditing: Comprehensive logs capture all intents, mitigation actions, and
enforcement states, including timestamps and results. Regular audits support forensic analysis
and continuous improvement of the security posture.

5.8 Deployment, Operation and Maintenance Guidelines
The RTR module’s deployment, operation, and maintenance are designed to ensure
continuous functionality and adaptability.

1. Deployment Guidelines:
a. Environment Setup: Verify dependencies (e.g., Python, Django, Docker) and

configure environment-specific settings via configuration files.
b. Containerization: Deploy the module in a Docker container, ensuring secure

port configurations and resource allocation for scalability.
c. Scalability: Design the architecture to support horizontal scaling, leveraging

container orchestration (e.g., Kubernetes) for high workloads.
2. Operation Guidelines:

a. Real-Time Monitoring: Monitor performance metrics (e.g., response times,
resource utilization) and mitigation action states using integrated logging tools.

b. Incident Response: Establish procedures for handling security incidents or
operational disruptions, with clear roles for rapid resolution.

c. State Tracking: Regularly review enforcement state logs to ensure mitigation
actions are executed as intended.

3. Maintenance Guidelines:
a. Patch Management: Apply regular security patches to the module and its

dependencies to address vulnerabilities.
b. Backup and Recovery: Maintain backups of configurations and logs, with

tested restoration procedures for data recovery.
c. Version Control: Use version control to track code changes, documenting

enhancements and bug fixes for traceability.
d. Continuous Improvement: Incorporate feedback from WP5 integration tests

and update NLP models to improve intent processing accuracy.

5.9 Changes and Debugging from IT-1 to IT-2
The transition from IT-1 to IT-2 addressed issues identified during preliminary integration in
WP5, resulting in a more robust and efficient RTR module:

• Error Handling: IT-1 revealed issues with malformed IBI inputs. IT-2 introduced
enhanced validation and error correction for both JSON and natural language inputs,
reducing processing errors.

• Performance Optimization: IT-1 performance bottlenecks were resolved through
code refactoring and optimized API interactions, reducing latency.

• NLP Integration: The advanced NLP version was developed to handle natural
language inputs, addressing IT-1 limitations where only structured JSON was
supported. Debugging ensured accurate intent translation into JSON and Ansible
commands.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 39 of 61 © 2023-2025 HORSE

• State Monitoring: IT-1 lacked enforcement state tracking. IT-2 introduced the state
monitoring mechanism, validated through WP5 tests to ensure reliable state updates
and logging.

• Endpoint Resilience: Unresponsive endpoints in IT-1 were mitigated with retry logic
and payload reconfiguration, improving communication reliability.

• Security Enhancements: The containerized environment and monitored ports
resolved IT-1 vulnerabilities, ensuring secure execution and communication.

These changes, validated through WP5 integration tests, ensure that the RTR module is fully
prepared for final deployment in the HORSE platform.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 40 of 61 © 2023-2025 HORSE

6 End-to-End Proactive Secure Connectivity Manager

6.1 Overview
The End-to-End Proactive Secure Connectivity Manager (ePEM) plays a pivotal role in the
HORSE security infrastructure, orchestrating actions and providing observability over various
components that constitute the end-to-end services secured within the HORSE security
perimeter [11]. To enhance its effectiveness, several improvements can be considered based
on the evolving landscape of network security and operational efficiency.

One potential improvement is the integration of advanced machine learning algorithms for
threat detection and response. By leveraging real-time data analytics, ePEM could enhance
its ability to identify anomalies and respond to security incidents more swiftly, thereby reducing
the response time to potential threats. This aligns with the current trend of utilizing AI-driven
solutions to bolster cybersecurity measures, ensuring that the infrastructure remains resilient
against emerging threats.

Additionally, enhancing the modular architecture of ePEM could facilitate better scalability and
adaptability. By allowing for more flexible integration of new network functions and services,
ePEM can more effectively manage the complexities of diverse network environments. This
modular approach would enable quicker deployment of new features and improvements,
ensuring that the system can evolve in tandem with technological advancements and user
needs.

Furthermore, implementing a more robust feedback mechanism from users and stakeholders
could provide valuable insights into the operational performance of ePEM. Regularly soliciting
input on the system's functionality and user experience would inform future updates and
enhancements, fostering a user-centric approach to development. This continuous
improvement cycle would not only enhance user satisfaction but also ensure that ePEM
remains aligned with the dynamic requirements of the HORSE project.

In summary, by integrating advanced threat detection technologies, enhancing modular
architecture, and establishing robust feedback mechanisms, ePEM can significantly improve
its operational effectiveness and security posture within the HORSE infrastructure.Final
Development Details

The ePEM is a cornerstone of the HORSE security infrastructure, designed to manage secure
connectivity across complex, distributed, and heterogeneous systems. As outlined in the
document, ePEM serves as a central architectural element that orchestrates actions and
provides observability over various components within the HORSE security perimeter. This
section delves into the final development details of ePEM, highlighting its functionalities,
integration capabilities, and the technologies employed to ensure its effectiveness.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 41 of 61 © 2023-2025 HORSE

Figure 6.1 The ePEM module highlighted within the HORSE architecture

6.1.1 Central Coordination and Observability
At the heart of ePEM's functionality is its role as a central coordinator, ensuring that all
elements and artifacts within the HORSE ecosystem operate securely and harmoniously.
ePEM orchestrates actions and maintains observability across diverse components, which is
crucial for managing the intricate interplay of resources and services. This orchestration is vital
for ensuring the resilience and security of the infrastructure, particularly in environments
characterized by rapid changes and evolving threats.

6.1.2 Topology Information Management
ePEM maintains a comprehensive database of the logical topology of the distributed
infrastructure, which includes information at both the wide-area connectivity and Virtualized
Infrastructure Manager (VIM) levels. This database records details about the orchestrators and
controllers responsible for governing these components, with each topological entity annotated
with resource constraints and access levels. Such detailed management of topology
information is essential for efficient resource management and access control, enabling ePEM
to respond dynamically to the needs of the network.

6.1.3 Management of NFV and Applicative Services
In addition to topology management, ePEM actively participates in the management of
Network Function Virtualization (NFV) and applicative services. It keeps track of the
localization and degrees of freedom granted by VIMs to Virtual Network Functions (VNFs) and
application components within the HORSE security perimeter. This continuous awareness
allows ePEM to update information related to NFV and applicative services based on exposure
levels provided by domain orchestrators and controllers, ensuring that the system remains
agile and responsive to operational demands.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 42 of 61 © 2023-2025 HORSE

6.1.4 Data Homogenization and Simplification
A significant aspect of ePEM's role is to homogenize and consolidate data from diverse
sources after the pre-processing module. This simplification provides a unified, coherent view
of the services managed by the HORSE platform, significantly aiding in decision-making and
security management. By streamlining data from various components, ePEM enhances the
overall efficiency of the orchestration process, allowing for quicker and more informed
responses to security incidents.

6.1.5 Meta-Actions for Security
ePEM autonomously acquires and exposes a repertoire of action types that can be applied to
each artifact or group of artifacts within the end-to-end services. These meta-actions assist in
formulating contingency plans for security threats and vulnerabilities, derived from a collection
of pre-designed Blueprint profiles that encapsulate the functional behaviour of diverse network
elements. This proactive approach to security ensures that ePEM can respond effectively to
potential threats, maintaining the integrity and availability of the network.

6.1.6 Blueprint Profiles
Blueprint profiles within the context of ePEM encompass a diverse range of complex network
elements, including 5G/6G radio mobile networks, distributed firewalls, and monitoring overlay
systems. These profiles serve as comprehensive templates that outline specific actions and
primitives essential for orchestrating activities throughout different phases of network
management. By providing a standardized framework, Blueprint profiles empower ePEM to
coordinate and execute operations seamlessly, ensuring efficiency and coherence in the
management of various network elements.

6.1.7 Modular Architecture
The modular and flexible architecture of ePEM allows for easy extension to support various
Network Functions (xNF) and ecosystems. At the foundation of this architecture lies the
metamodel, specifically designed to augment extensibility and flexibility while driving clear
interaction patterns among the different internal modules during Lifecycle Management (LCM)
operations. This modularity is crucial for adapting to the evolving needs of the network and
integrating new functionalities as they become necessary.

6.1.8 Integration with Domain Orchestrators
ePEM collaborates with Domain Orchestrators and controllers to enhance the efficiency and
intelligence of operations. These external entities bring different degrees of automation and
intelligence to the management of resources and artifacts throughout their lifecycle. This
collaboration is essential for achieving a cohesive orchestration environment, where various
components can work together seamlessly to deliver secure and reliable services.Security and
Data Collection

Security and data collection are foundational pillars in the design and operation of the End-to-
End Proactive Secure Connectivity Manager (ePEM) within the HORSE architecture. The
ePEM employs a comprehensive cybersecurity toolkit, including VyOS and Suricata, to ensure
robust security measures tailored to the specific demands of the network

VyOS serves as a cornerstone of ePEM's security architecture, providing a versatile and
scalable solution that integrates seamlessly into both standard hardware and virtualized

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 43 of 61 © 2023-2025 HORSE

environments. This adaptability allows ePEM to establish, manage, and safeguard secure
communication paths across the network, enhancing its capability to enforce network
segmentation and sophisticated firewall policies. By leveraging VyOS, ePEM can effectively
protect against unauthorized access attempts, thereby fortifying the overall security
infrastructure.

In conjunction with VyOS, Suricata functions as an Intrusion Detection and Prevention System
(IDPS), continuously monitoring network traffic for potential security incidents or anomalies.
This proactive surveillance is crucial for identifying threats before they escalate, contributing
to a robust and responsive security framework within the ePEM . Suricata's ability to initiate
preventive actions upon detecting a security threat adds an extra layer of defense, minimizing
the potential impact of security incidents and ensuring the continuity of secure network
operations.

The ePEM's approach to data collection is sophisticated, facilitated by its Topology Manager,
which orchestrates a network of Prometheus servers for efficient data gathering. These
Prometheus instances are strategically positioned to collect critical metrics from diverse
Network Functions (xNFs) across the network. The integration of Prometheus servers allows
ePEM to dynamically deploy metric exporters on xNFs, tailoring the data collection process to
align with specific operational requirements and evolving network conditions.

Moreover, the data collection framework is designed to be adaptable and responsive, with the
nature and volume of collected data closely linked to the configuration of the exporters. This
modular approach ensures that ePEM can flexibly adjust its data collection strategies,
accommodating the unique characteristics of different xNFs within the network. By establishing
a comprehensive framework for data management, ePEM enhances its analytical capabilities,
fostering an informed, secure, and agile environment within the HORSE architecture.

Security measures during data collection are paramount. The ePEM employs industry-
standard encryption protocols, such as TLS, to ensure the confidentiality and integrity of data
exchanged between interconnected components. This safeguarding of communication
channels mitigates the risk of data interception and tampering, reinforcing the security posture
of the entire system. Additionally, rigorous authentication and authorization mechanisms are
integral to the RTR module's security architecture, ensuring that only authorized entities can
initiate and respond to data requests.

In summary, the integration of VyOS and Suricata within the ePEM framework, combined with
a sophisticated data collection methodology facilitated by Prometheus, underscores the
commitment to maintaining a secure and resilient network infrastructure. The proactive
measures taken to safeguard data during collection, transmission, and storage align with
industry standards and best practices, ensuring that the HORSE architecture remains robust
against emerging threats and vulnerabilities.

6.2 Integration and Interfaces

6.2.1 APIs and Format Exposed Through Interfaces
ePEM within the HORSE architecture employs a robust set of RESTful APIs that serve as a
foundational element for seamless interaction within the system. These APIs are designed to
be user-friendly and standardized, facilitating dynamic resource provisioning, proactive
security policy enforcement, and data retrieval. The simplicity and scalability of these APIs
empower external systems and services to engage with ePEM effortlessly, ensuring efficient
management and utilization of network resources.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 44 of 61 © 2023-2025 HORSE

ePEM's southbound APIs establish essential connections with a diverse array of network
elements and devices, including physical and virtual components such as switches, routers,
and virtualized network functions (VNFs). This connectivity is crucial for orchestrating
resources across the network, ensuring cohesive management and utilization. Conversely, the
northbound interfaces enable collaboration with higher-level services and orchestrators, such
as the Open-Source MANO orchestrator and cloud services. This dual approach allows ePEM
to translate high-level service requests into actionable network directives, facilitating seamless
integration within a broader ecosystem.

To ensure interoperability, ePEM supports various data formats, including JSON, XML, and
YAML. This flexibility allows for structured and interoperable data exchange with external
entities, which is particularly valuable in heterogeneous environments where diverse systems
coexist. The use of standard communication protocols such as HTTP/HTTPS, MQTT, and
SNMP further enhances ePEM's ability to communicate across different technology stacks,
contributing to a cohesive and interconnected network environment.

The system implements robust authentication, authorization, and encryption mechanisms to
safeguard the APIs. Access to sensitive functionalities and data is strictly controlled, preventing
unauthorized access and ensuring that data transmitted through APIs is encrypted to protect
against potential threats such as eavesdropping and tampering. This commitment to security
ensures a trustworthy and resilient communication framework within the ePEM ecosystem.

6.2.1.1 Topology

Table 6.1 ePEM’s API endpoints (Topology)

HTTP Method Endpoint Description

GET /v1/topology Get information regarding managed topology.

POST /v1/topology Create the topology.

DELETE /v1/topology Delete Topology.

6.2.1.2 Topology – VIM

Table 6.2 ePEM’s API endpoints (Topology - VIM)

HTTP Method Endpoint Description

GET /v1/topology/vim/{vim_id} Get the VIM data from OSM.

POST /v1/topology/vim Create the VIM in OSM.

PUT /v1/topology/vim Update the VIM in OSM.

DELETE /v1/topology/vim/{vim_id} Delete the VIM from OSM.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 45 of 61 © 2023-2025 HORSE

6.2.1.3 Topology – Network

Table 6.3 ePEM’s API endpoints (Topology - Network)

HTTP Method Endpoint Description

GET /v1/topology/network/{network_id} Get the network data.

POST /v1/topology/network Create the network.

PUT /v1/topology/network Update the network.

DELETE /v1/topology/network/{network_id} Delete the network.

POST /v1/topology/network/{network_id}/add/pool Add pool network.

DELETE /v1/topology/network/{network_id}/del/pool Delete the pool network.

POST /v1/topology/network/{network_id}/k8s/reser
ve

Reserve range to k8s Cluster.
Takes one or more allocation
pools from the topology
network and partially assigns
them to the k8s cluster,
depending on the length
requested.

DELETE /v1/topology/network/{network_id}/k8s/relea
se

Release the reserved range
from the k8s cluster and the
topology network.

6.2.1.4 Topology – Router

Table 6.4 ePEM’s API endpoints (Topology - Router)

HTTP Method Endpoint Description

GET /v1/topology/router/{router_id} Get the router data.

POST /v1/topology/router Create the router.

DELETE /v1/topology/router/{router_id} Delete the router.

6.2.1.5 Topology – Kubernetes

Table 6.5 ePEM’s API endpoints (Topology - Kubernetes)

HTTP Method Endpoint Description

GET /v1/topology/kubernetes Get the k8s data.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 46 of 61 © 2023-2025 HORSE

GET /v1/topology/kubernetes/{cluster_id} Get the k8s data of the cluster.

POST /v1/topology/kubernetes_external Add a external k8s cluster to the
topology.

PUT /v1/topology/kubernetes/update Update NFVCL k8s cluster.

DELETE /v1/topology/kubernetes/{cluster_id} Delete the k8s cluster.

6.2.1.6 Blueprint

Table 6.6 ePEM’s API endpoints (Blueprint)

HTTP Method Endpoint Description

GET /nfvcl/v2/api/blue Get all the blueprint data.

GET /nfvcl/v2/api/blue/{blueprint_id} Get the data of the blueprint.

DELETE /nfvcl/v2/api/blue/{blueprint_id} Delete blueprint.

DELETE /nfvcl/v2/api/blue/all/blue Delete all blueprints.

PATCH /nfvcl/v2/api/blue/protect/{blueprint_id} Protect the blueprint.

6.2.2 Access Control and Permissions

Access control and permissions are critical components of the ePEM architecture, ensuring
that only authorized users can perform specific actions and access sensitive data. ePEM
implements a robust Role-Based Access Control (RBAC) system to manage permissions in
an efficient way. User roles, such as administrators, operators, and tenants, are assigned
granular access privileges, which help reduce the risk of unintended configuration
modifications or unauthorized data retrieval.

The access control framework is policy-driven, with access rights defined according to user
roles. These policies dictate what actions users can perform and what data they can access,
allowing for customizable and adaptable security measures that align with specific operational
needs. In a multi-tenant environment, ePEM provides the capability to manage access control
and permissions for different tenant organizations, ensuring that each tenant has its own
isolated space within the infrastructure. This isolation safeguards the privacy and security of
their resources and data.

Audit trails and logging are integral to ePEM's access control framework. The system logs and
audits access and permission changes, providing a record of accountability and traceability. In
the event of security incidents or policy infringements, these audit logs offer valuable insights
into who initiated system access, the specific actions performed, and when they occurred. This
comprehensive logging mechanism not only aids in identifying potential security incidents but
also contributes to continuous improvement initiatives within the ePEM architecture.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 47 of 61 © 2023-2025 HORSE

In summary, the integration of APIs and the implementation of access control and permissions
within ePEM are essential for maintaining a secure and efficient orchestration platform. By
leveraging robust APIs and a well-defined access control framework, ePEM ensures that the
HORSE infrastructure remains resilient, adaptable, and secure against emerging threats and
vulnerabilities.

6.3 Deployment, Operation and Maintenance Guidelines
The deployment, operation, and maintenance of the ePEM module are crucial for ensuring the
continuous security and functionality of the HORSE platform. To facilitate seamless integration
and sustained effectiveness, comprehensive guidelines are outlined.

Firstly, environment preparations are essential, ensuring that the target environment aligns
with the system requirements specified for the ePEM module, including the availability of
necessary dependencies like the Python runtime environment. Configuration management
practices should be implemented to streamline deployment processes, allowing for easy
adaptation to diverse scenarios.

During operation, continuous monitoring mechanisms must be established to track the ePEM
module's performance, including key performance indicators such as response times and
resource utilization. Incident response procedures should be documented to guide the team in
the event of security incidents, clearly defining roles and responsibilities.

For maintenance, a robust patch management strategy is vital to keep the ePEM module
updated, mitigating vulnerabilities. Additionally, establishing backup and recovery procedures
ensures the safeguarding of critical data and configurations, while version control systems help
track changes in the ePEM module's codebase. These guidelines collectively contribute to the
effective management of the ePEM module within the HORSE architecture.

6.4 Changes and Debugging from IT-1 to IT-2
Topology Info Management

Removed support for Open-Source Mano. Now everything is handled directly from ePEM:

• VIM (Virtualized Infrastructure Manager) - added support for Proxmox in addition to
OpenStack (prev. supported).

• K8S - now ePEM interacts directly with Kubernetes using K8S APIs.

Performance metrics

Now ePEM collects metrics when a Blueprint is created or a day-2 is called and saves the time
needed for each operation to the database.

Management of NFV/Application Services

The creation of NFV/App Services has been abstracted such that it is easier for the
intermediate user to develop a custom Blueprint in the ePEM. Implemented a system that
enables users to write Configurators to support custom Devices in addition to Amarisoft and
Liteon gNBs.

Data Homogenization and Simplification

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 48 of 61 © 2023-2025 HORSE

For each 5G blueprint type (Core, RAN, UPF), the request format is the same for the different
implementations allowing to replicate the same environment, but for different implementations.

Meta-Actions for Security

Added beta system for user authentication when using ePEM APIs thought the use of tokens
obtained on login. Planned a system, to be implemented in the future, to group users into
groups with RBAC.

Enhancements to Network Function Virtualization Orchestrators (NFVO) and VIMs

Removed unstable and buggy OSM in favor of a custom ad-hod designed framework, internal
to the ePEM, to interact with VIMs. Performance indicators, in terms of time, have increased
drastically (deployment time has decreased).

Blueprint Profiles

5G- improved 5G blueprint system, now most of the code is abstracted in generic classes
greatly reducing the work needed to develop a new blueprint, currently supported 5G
blueprints:

Core

• SDCore
• OAI
• Free5GC
• HPE Athonet (only configuration of an already installed instance)

RAN

• UERANSIM
• OAI (only the simulated UE and USRP version not yet the ORAN one), support all the

available split level

PDU configurator

• Amarisoft gNB
• Liteon AIO gNB

Kubernetes Blueprint

Other blueprints: generic Ubuntu VM.

Deployment

• Added Docker container for ePEM
• Added Docker compose
• Added Helm Chart

Unit test

Create some infrastructure to allow an easy creation of unit tests

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 49 of 61 © 2023-2025 HORSE

6.4.1 Major Architectural Changes

Blueprint System Evolution

• BlueprintNG Introduction. Complete rewrite of the blueprint system with improved
lifecycle management, parent-child relationships between blueprints, and better
resource management.

• Day 2 Operations. Added comprehensive day 2 operations with call history tracking
• Blueprint Protection. Implemented blueprint protection mechanisms and concurrent

operation prevention.
• Performance metrics collection. Metrics regarding the blueprints creation and day2s

are recorded to the database.

5G Blueprints

• Generic 5G Blueprint. Introduced a generic 5G core blueprint supporting multiple 5G
implementations.

• Multiple 5G Core Support. Added support for SD-Core, OpenAirInterface (OAI),
Free5GC, and UERANSIM.

• Kubernetes Integration. Full K8S support for 5G network functions with Helm chart
management.

• RAN and UE Blueprints. Added Radio Access Network and User Equipment blueprint
implementations.

Infrastructure Provider Expansion

• Proxmox Support. Added Proxmox virtualization provider with VM configuration and
SDN support.

• Enhanced OpenStack. Improved OpenStack provider with better project
management, network handling, and authentication.

• Kubernetes Provider. Comprehensive K8S provider with node management,
deployment scaling, and Multus networking.

Core Platform Improvements

Authentication & User Management

• User Management System. Complete user authentication system with JWT tokens.
• Role-Based Access. Implemented user roles and permissions.
• Token Refresh. Compliant token refresh mechanisms.

Networking Enhancements

• Multus Support. Advanced Kubernetes networking with Multus CNI.
• IP Pool Management. Sophisticated IP allocation and reservation system.
• Network Topology. Enhanced network topology management for K8S clusters.

Code Quality & Architecture

• Core-REST Split. Separated core components from REST API layer.

DevOps & Deployment

• Configuration Management. Enhanced configuration with environment variable
support.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 50 of 61 © 2023-2025 HORSE

 Performance & Reliability

Performance Monitoring

• Metrics Collection. Comprehensive performance metrics for blueprint operations.
• REST API. Added endpoints for retrieving performance data.
• Error Tracking. Enhanced error handling and logging systems.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 51 of 61 © 2023-2025 HORSE

7 Domain Orchestrator Connectors

7.1 Overview
The Domain Orchestrator Connectors (DOC) module is a pivotal component and an essential
API within the HORSE platform. It primarily functions as an intermediary that receives security
mitigation actions in a structured JSON format, typically originating from the Reliability, Trust,
and Resilience Provisioning Framework (RTR) via the End-to-end Proactive Secure
Connectivity Manager (ePEM). Responsible for orchestrating tasks across diverse network
segments, including RAN, Core, Transport, Edge (near and far), and Cloud, as depicted in
Figure 7.1, the DOC translates these received JSON actions into various specific formats
suitable for the respective network managers within each segment.

Developed under the leadership of 8BELLS with contributions from CNIT, ETI, and ZORTE,
the DOC is designed with high modularity, allowing new network managers and their distinct
communication logics to be seamlessly integrated or removed. This provides a unified
resource stratum that blurs orchestration boundaries between these segments. This multi-
domain orchestration capability is crucial for effectively managing and controlling resources
across disparate network infrastructures, aligning with advancements in multi-domain network
slicing orchestration architectures and federated resource control[12].

Serving as a SouthBound Interface for the ePEM (which is based on the Open Source
MANO orchestrator), the DOC ensures seamless management and orchestration of

resources, supporting cross-domain trust mechanisms, and enabling the secure integration
of multi-stakeholder infrastructures by pushing translated mitigation actions for enforcement.

Figure 7.1 The DOC component within the HORSE architecture

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 52 of 61 © 2023-2025 HORSE

7.2 Main Functionalities
The DOC module facilitates the enforcement of security mitigation actions across various
network segments by interfacing with their respective network managers. Its key functionalities
include:

• Mitigation Action Processing and Translation: The DOC functions as an API that
receives mitigation actions in a structured JSON format, as created by the RTR
component. It then translates these actions into various specific formats suitable for the
diverse network managers with which the DOC communicates. This adaptable
translation mechanism ensures that security directives can be effectively applied
across heterogeneous network environments.

• Flexible Network Management Integration: The module's design emphasizes
modularity, enabling the seamless addition or removal of new networks and their
respective managers, along with their unique communication logics. This flexibility
allows the DOC to easily integrate with and orchestrate mitigation actions across a
dynamically evolving set of networks, ensuring security enforcement can scale and
adapt to different infrastructure requirements.

• Mitigation Action Enforcement Tracking: For every mitigation action it receives,
translates, and sends, the DOC maintains a detailed internal record within its dedicated
database. This internal record tracks the status of enforcement for each action (e.g.,
pending, enforced, failed), providing comprehensive oversight of the security posture.
It then pushes enforcement results, including relevant messages and timestamps, to
the RTR Framework for state updates and holistic platform awareness.

7.3 Integration and Interfaces
The DOC module integrates with the HORSE architecture through well-defined interfaces,
acting as a SouthBound Interface for the ePEM and communicating with network managers
across various domains.

• Northbound Interface (ePEM Integration): The DOC receives mitigation actions from
the ePEM via RESTful APIs. Inputs are structured as JSON messages, which
encapsulate details such as mitigation actions, threat information, and time frames.

• SouthBound Interface (Network Managers): The DOC translates mitigation actions
into domain-specific formats and sends them to RAN, Core, Transport, Edge, and
Cloud network managers via HTTP POST requests. It supports diverse protocols and
formats to ensure compatibility with each segment’s management system.

• Enforcement Status Feedback: The DOC implements a mechanism that tracks and
stores the status of each mitigation action internally. It collects enforcement status
updates (pending, enforced, failed) from network managers, including messages and
timestamps. This tracking and storage mechanism is designed to be resilient,
maintaining accurate records even in the presence of temporary network failures or
communication disruptions. These results are pushed to the RTR component via a
dedicated API endpoint, enabling the RTR to update mitigation action states
accordingly.

7.4 API Functionality and Interfaces
The DOC module serve as a central hub, expertly managing how security actions get carried
out across all sorts of different network parts. It's essentially our main API gateway, making

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 53 of 61 © 2023-2025 HORSE

sure everything runs smoothly between our high-level control systems and the actual network
infrastructure down below.

• Northbound API (Talking to ePEM): Looking 'north,' the DOC talks to our End-to-end
Proactive Secure Connectivity Manager (ePEM) through its Northbound API. This is
where the DOC receives all the security actions it needs to carry out. These come in
as neat, structured JSON messages via RESTful APIs, packed with all the important
details like what the mitigation is, what threat it's addressing, and when it needs to
happen, the API endpoint that can be utilized by the ePEM are displayed in Figure 7.2.

• Southbound APIs (Talking to Network Managers): Now, looking 'south,' the DOC
connects with all the different network managers (like those for RAN, Core, Transport,
Edge, and Cloud) using its flexible Southbound APIs. When the DOC gets a mitigation
action, it doesn't just forward it as-is. Instead, it cleverly translates that generic JSON
instruction into the exact format and protocol each specific network segment
understands. These perfectly tailored actions are then sent off to their respective
managers, usually through HTTP POST requests. What's really clever about this
design is how modular it is: we can easily plug in or unplug new network managers and
even customize how the DOC talks to each one. This flexibility means our system can
adapt and scale according to changes in the network landscape.

Figure 7.2 DOC API endpoints

7.5 Changes and Debugging from IT-1 to IT-2
The transition from IT-1 to IT-2 involved significant debugging and enhancements to address
issues identified during preliminary integration in WP5:

• Error Handling: IT-1 revealed challenges with mismatched mitigation action formats
for different network segments. IT-2 introduced robust validation and translation
mechanisms to ensure compatibility, reducing errors.

• Performance Optimization: IT-1 performance bottlenecks in multicluster
environments were resolved through code refactoring and optimized API interactions,
improving orchestration latency.

• Enforcement Status Monitoring: IT-1 lacked a mechanism to track mitigation action
enforcement. IT-2 introduced status monitoring (pending, enforced, failed) and
feedback loops with the RTR, validated through WP5 tests to ensure accurate state
updates.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 54 of 61 © 2023-2025 HORSE

• Endpoint Resilience: Unresponsive network managers in IT-1 were addressed with
retry logic (e.g., exponential backoff) and payload reconfiguration, improving
communication reliability across segments.

These changes, validated through WP5 integration tests, ensure that the DOC module is fully
prepared for final deployment, providing a secure, scalable, and efficient orchestration solution
for the HORSE platform.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 55 of 61 © 2023-2025 HORSE

8 Compliance Assessment Procedures
The Compliance Assessment System (CAS) primarily aims to ensure all HORSE actions
comply with predefined security and privacy policies. It also verifies that decisions from the
Trustable AI engine align with regulations. This systematic validation aligns with
comprehensive frameworks for counteracting cyber threats and building future cybersecurity,
which emphasize robust policy enforcement and resilient systems [13]. CAS acts as a critical
checkpoint, ensuring AI decisions are not automatically executed without validation against
these established policies, thereby maintaining control over all actions within HORSE.
Internally, CAS utilizes Open Policy Agent, a policy engine that streamlines policy definition
and authoring for regulators.

Figure 8.1 The CAS component within the HORSE architecture

8.1 Overview and Final Development Details
CAS is a "blackbox" component focused on validating all actions within HORSE. CAS is
connected to HORSE through the IBI component in order to validate every action that HORSE
is going to take. Within the HORSE workflow, CAS stands between the detection and/or
prediction and the action that will take place since it’s the component that will either give the
go ahead or stop a possible action that will take place within HORSE.

By receiving the minimum information required for a specific mitigation action in a standardized
format (JSON) that indicates the intended mitigation action and the fields as shown in Figure
8.2

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 56 of 61 © 2023-2025 HORSE

Figure 8.2 Example input for CAS to validate showcasing the action and fields

CAS offers a RestAPI that takes a mitigation action in the aforementioned format and returns
one of four possible outcomes:

• Full compliance: The mitigation action fully meets security and privacy policies,
returning a confirmation, as shown in Figure 8.3.

Figure 8.3 Example result for full compliance

• Partial compliance: The action doesn't fully comply. CAS flags this, advises against
proceeding as is, provides a compliance percentage, and suggests changes for
improvement. This helps HORSE adapt to policy updates, as shown in Figure 8.4.

Figure 8.4 Example result for partial compliance

• Zero Compliance: The compliance level is too low to proceed, or CAS can't make a
decision with the given info, as shown in Figure 8.5.

Figure 8.5 Example result for zero compliance

• Unable to make a decision: CAS detects an issue but withholds details, for example,
if a valid action seems suspicious given the current threat with the goal not to expose
information on an attack.

Figure 8.6 Example result for suspicious mitigation action

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 57 of 61 © 2023-2025 HORSE

Internally, CAS validates each request through a pipeline.

1. First, it checks the request's context against HORSE's current state. If it seems illogical,
it's rejected without extra details to avoid aiding potential attacks.

2. The action is checked against relevant policies. Policies are created and linked to
actions.

3. CAS evaluates each policy for a given request and can provide helpful suggestions for
achieving compliance, like removing an IP from a rate-limiting list if it's deemed that this
violates a policy.

4. Finally, CAS logs data for auditing by authorized users, removes sensitive details,
cleans the results, and responds quickly to avoid delays.

Integration with HORSE

CAS integrates with HORSE via components like IBI, which decides on the mitigation actions.
IBI uses CAS's RestAPI to validate these actions and their parameters.

The external API for HORSE is simple, with a single validation endpoint for broader applicability
to future mitigation actions:

• [POST] /external-data: Submits a query for validation and returns the result after
pipeline processing.

A request specifies the mitigation to validate and the relevant fields. Internally, CAS has more
detailed endpoints for better understanding its operations, but these aren't exposed to other
components for security reasons.Internal API endpoints include:

• [PUT] /policies: Used to populate evaluation policies (internal use only as policies are
predefined). It is usually used if we want to dynamically adjust (add/remove/modify) our
policies while the CAS is running.

• [GET] /possible-actions: Returns a list of all the possible mitigation actions that CAS
can validate (internal only to prevent revealing capabilities if compromised).

• [GET] /current-attack: CAS communicates with HORSE to know the current attack
type that was detected or predicted.

System-wide awareness

CAS needs system-wide awareness to make informed decisions, knowing the system's status
at any point. For HORSE, CAS should assess if a mitigation action is relevant based on
detections from DEME or predictions from DTE.

“Blackbox” nature

CAS's "blackbox" nature helps integration, as users like IBI only interact via the API without
needing details about the underlying policies. This improves scalability, allowing policy updates
without changes elsewhere in HORSE.

Open Policy Agent

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 58 of 61 © 2023-2025 HORSE

OPA is a general-purpose policy engine that unifies policy enforcement across the stack. OPA
provides a high-level declarative language that lets you specify policy for a wide range of use
cases.

Internally, for the assessment of policies CAS uses Open Policy Agent. This means that
policies are being written in Rego language and in combination with the provided data OPA
can make a binary decision on a query.

8.2 Changes and Debugging from IT-1 to IT-2
The transition from IT-1 to IT-2 involved several changes:

Based on the changes in the architecture of HORSE, it was decided that CAS needs to gets
vital information about HORSE's state in order to prevent possible attacks like a Man in the
Middle where a component of HORSE is compromised and the mitigation action doesn’t
correlate with the predicted / detected attack.

Also, CAS was adjusted from a typical allow or not allow binary system to a more dynamic and
insightful compliant system of (compliant, partial compliant, not compliant, no-decision). To
both provide better information for someone that utilizes CAS and support for policies that can
be later introduced.

Introduction of OPA as an agent to validate the policies authored to validate that every possible
action that HORSE will take is passing the regulations and policies that are being set for that
specific action.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 59 of 61 © 2023-2025 HORSE

9 Discussion

9.1 Achievements of WP4
WP4 has successfully delivered a fully functional and secure orchestration layer for the
HORSE platform, achieving the IT-2 maturity level across all its core components. Major
accomplishments include:

• Completion and Maturation of Core Components: All WP4 components—Smart
Monitoring (SM), Pre-processing Module, Common Knowledge Base (CKB), Reliability,
Trust, and Resilience Framework (RTR), End-to-End Proactive Secure Connectivity
Manager (ePEM), Domain Orchestrator Connectors (DOC), and Compliance
Assessment Procedures (CAS)—have been developed, refined, and validated. Each
component has evolved from initial prototypes to robust, secure, containerized services
integrated with the platform.

• Security-by-Design and Compliance: WP4 prioritized privacy and security, with
every module incorporating TLS-encrypted communication, access control (RBAC),
anonymization (e.g., PCAP data in SM), OAuth2.0-based authentication, and GDPR-
compliant data handling. These measures ensure that the orchestration platform
operates securely in high-threat 5G/6G environments.

• AI-Augmented Automation: Several WP4 components now leverage AI, notably the
CKB, which uses LLMs for attack-mitigation mapping, and the RTR, which supports
natural language interpretation of mitigation intents. These advances improve decision
automation, scalability, and usability of the platform.

• Scalability and Interoperability: Thanks to the modular and containerized nature of
the components and adherence to RESTful APIs and standard data formats (e.g.,
JSON, YAML), we ensure interoperability with external systems and enables scalable
deployment across diverse infrastructures.

• Performance and Debugging Enhancements: Each module underwent extensive
debugging and optimization following IT-1 and WP5 preliminary integration feedback.
Latency was reduced, retry mechanisms were added, and data mismatches were
resolved—ensuring that the orchestration layer can support real-time threat mitigation
scenarios.

Collectively, WP4 has laid the technical foundation for a secure, AI-assisted orchestration
system that is human-centric, modular, and prepared for deployment in operational
environments.

9.2 Integration with WP5
Throughout the IT-2 development cycle, WP4 maintained strong collaborative ties with WP5
to ensure smooth integration into the broader HORSE platform. The following integration
outcomes were achieved:

• Feedback-Driven Refinement: WP4 components were iteratively improved based on
WP5’s preliminary integration and testing feedback. This included enhancements in
interface robustness, error handling, and standardization of data exchange formats.

• Interface Compatibility: All WP4 components exposed RESTful APIs in accordance
with WP5 integration guidelines, enabling seamless connectivity with upstream (e.g.,
IBI, DEME) and downstream (e.g., ePEM, testbed) modules.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 60 of 61 © 2023-2025 HORSE

• Data Pipeline Coherence: The Pre-processing Module and Smart Monitoring were
aligned to ensure that data collected in WP5 scenarios could be harmonized and
consumed by analytics components without delays or inconsistencies. Dual data output
support enabled both real-time and historical data access for validation tasks.

• Mitigation Workflow Synchronization: The RTR and ePEM modules were
successfully aligned with WP5's orchestration and enforcement flow. RTR now
supports asynchronous status tracking via callbacks from ePEM, which proved
essential during WP5 tests of end-to-end threat mitigation cycles.

• Validation Readiness: All WP4 modules were containerized, thoroughly documented,
and delivered with deployment and maintenance guidelines, easing their integration in
WP5’s full platform validation tasks (D5.2). Their current readiness positions WP4
components to be tested under realistic use-case scenarios in the HORSE testbed
environments.

In summary, WP4 achieved full technical readiness for final integration, providing WP5 with
stable, mature components and ensuring the orchestration platform meets the functional and
non-functional requirements of the HORSE project.

HORSE Project - D4.2: HORSE AI-assisted human-centric

Secure and Trustable Orchestration

 Page 61 of 61 © 2023-2025 HORSE

References
[1] E. Rodriguez et al., ‘A Security Services Management Architecture Toward Resilient 6G

Wireless and Computing Ecosystems’, IEEE Access, vol. 12, pp. 98046–98058, 2024, doi:
10.1109/ACCESS.2024.3427661.

[2] X. Zhang et al., ‘SRv6-INT Enabled Network Monitoring and Measurement: Toward High-
Yield Network Observability for Digital Twin’, in Proceedings of the 3rd International
Conference on Machine Learning, Cloud Computing and Intelligent Mining
(MLCCIM2024), vol. 1328, F. Sun, H. Wang, H. Long, Y. Wei, and H. Yu, Eds., in Lecture
Notes in Electrical Engineering, vol. 1328. , Singapore: Springer Nature Singapore, 2025,
pp. 113–126. doi: 10.1007/978-981-96-1698-5_12.

[3] J. M. Parra-Ullauri, X. Zhang, A. Bravalheri, Y. Wu, R. Nejabati, and D. Simeonidou,
‘Federated Analytics for 6G Networks: Applications, Challenges, and Opportunities’, Jan.
09, 2024, arXiv: arXiv:2401.03878. doi: 10.48550/arXiv.2401.03878.

[4] X. Chen, W. Feng, N. Ge, and Y. Zhang, ‘Zero Trust Architecture for 6G Security’, Mar.
16, 2022, arXiv: arXiv:2203.07716. doi: 10.48550/arXiv.2203.07716.

[5] Bulk index or delete documents. [Online]. Available:
https://www.elastic.co/docs/api/doc/elasticsearch/group/endpoint-document

[6] M. Penelova, ‘Access Control Models’, Cybernetics and Information Technologies, vol. 21,
no. 4, pp. 77–104, Dec. 2021, doi: 10.2478/cait-2021-0044.

[7] C. Fan, M. Chen, X. Wang, J. Wang, and B. Huang, ‘A Review on Data Preprocessing
Techniques Toward Efficient and Reliable Knowledge Discovery From Building
Operational Data’, Front. Energy Res., vol. 9, p. 652801, Mar. 2021, doi:
10.3389/fenrg.2021.652801.

[8] L. Zheng et al., ‘Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena’, Dec. 24,
2023, arXiv: arXiv:2306.05685. doi: 10.48550/arXiv.2306.05685.

[9] Adeola Adewa, Vincent Anyah, Omoniyi David Olufemi, Adedeji Ojo Oladejo, and
Toluwanimi Olaifa, ‘The impact of intent-based networking on network configuration
management and security’, Global J. Eng. Technol. Adv., vol. 22, no. 1, pp. 063–068, Jan.
2025, doi: 10.30574/gjeta.2025.22.1.0012.

[10] M. Danousis, K. Kaltakis, A. Dimos, C. Skianis, E. Kafetzakis, and I. Giannoulakis,
‘Optimizing Network Cybersecurity: AI-Powered NLP for Natural Language Command
Interpretation’, in 2024 IEEE 29th International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CAMAD), Athens, Greece: IEEE, Oct.
2024, pp. 1–7. doi: 10.1109/CAMAD62243.2024.10942816.

[11] A. Carrega and R. Rabbani, ‘ePEM: An End-to-End Proactive Secure Connectivity
Manager for 6G Orchestrator Solutions’, in 2024 IEEE 29th International Workshop on
Computer Aided Modeling and Design of Communication Links and Networks (CAMAD),
Athens, Greece: IEEE, Oct. 2024, pp. 1–7. doi: 10.1109/CAMAD62243.2024.10942805.

[12] G. Gatti, J. M. Jorquera Valero, M. Gil Pérez, and C. Basile, ‘Holistic Cyber Risk
Assessment in the Cloud Continuum: A Multi-Layer, Multi-Domain Approach’, 2025. doi:
10.2139/ssrn.5223333.

[13] M. F. Safitra, M. Lubis, and H. Fakhrurroja, ‘Counterattacking Cyber Threats: A Framework
for the Future of Cybersecurity’, Sustainability, vol. 15, no. 18, p. 13369, Sep. 2023, doi:
10.3390/su151813369.

