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Executive summary 

This deliverable presents the final version of the software modules developed within Work 
Package 3 (HORSE Intelligence) of the HORSE research project. It marks the completion of 
the five key tasks composing WP3 and reflects the culmination of technical efforts carried out 
over the past 30 months of the project’s 36-month duration. This final release succeeds and 
builds upon the intermediate version delivered over a year ago, which focused on providing 
stable prototypes of the Platform Intelligence (PIL) components for initial integration (IT-1) into 
the HORSE architecture. 

The modules addressed in this report are: 

Sandboxing (SAN) – hosting the Digital Twins for scenario testing and predictive analysis, 

Early Modelling (EM) – responsible for generating preliminary assessments through policies 
and rules, 

Distributed and Trustable AI Engine (DTE) – ensuring secure and privacy-compliant AI data 
handling, threat identification and mitigation, 

Policies and Data Governance (PAG) – managing and enforcing data policies across the 
platform, and 

Threat Detector and Mitigation Engine (DEME) – focusing on detecting and mitigating 
security threats based on network behaviours and data analysis. 

This final version documents the complete development, refinement, debugging, and internal 
validation of the above modules, collectively constituting the Platform Intelligence components 
at Integration Target 2 (IT-2). These components are now ready for full integration into the 
HORSE platform through Work Package 5 (Platform Integration, Use Case Deployment, 
Validation, and Final Release), which dominates the project’s final six months. 

Importantly, the debugging and improvements in this version were informed by preliminary 
integration and validation activities already initiated under WP5. An internal technical report 
produced at Month 24 supported these early efforts (Task 5.2), and this final deliverable aligns 
with the planned conclusion of WP3 at Month 30. 

With this comprehensive and stabilized release, the Platform Intelligence layer is fully prepared 
for its role in the final integrated platform. It ensures interoperability with the components from 
WP4 and sets a solid foundation for the final deployment and validation stages ahead. 
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1 Introduction 

This deliverable presents the final outcomes of WP3 – Platform Intelligence within the HORSE 
project. As the second and concluding version of this document, it builds upon the initial results 
delivered during the first iteration (IT-1), and now reflects the completed implementation, 
refinement, and validation of all components associated with WP3. 

Since this is categorized as an “OTHER” type deliverable, its focus remains primarily on the 
software development aspects of the involved modules, as well as their readiness for 
integration within the broader HORSE platform. 

The document is organized into five main sections, each corresponding to a specific task within 
WP3: 

• Section 2: Sandboxing, corresponding to Task 3.1 

• Section 3: Early Modelling Framework, corresponding to Task 3.2 

• Section 4: Distributed and Trustable AI Engine, corresponding to Task 3.3 

• Section 5: Policies and Data Governance, corresponding to Task 3.4 

• Section 6: Threat Detector and Mitigation Engine, corresponding to Task 3.5 

 

Section 2 covers the final development of the Sandboxing (SAN) module, which includes two 
Digital Twin subcomponents: the Prediction and Prevention DT and the Impact Analysis DT. 
Together, they enable simulation and evaluation of various configurations and scenarios, 
offering a dynamic environment for testing platform behaviour before deployment. 

Section 3 focuses on the Early Modelling (EM) component, which provides foundational input 
to the sandbox through two key elements: the Taxonomy, responsible for profiling and 
classifying system components, and the Attributes block, which defines the strategic criteria 
used to characterize modules based on specific parameters. 

Section 4 describes the Distributed and Trustable AI Engine (DTE), which collects and 
processes data from multiple sources using machine learning and AI techniques to derive 
security policies while ensuring data privacy. It also supports data pre-processing for model 
training and integrates with other intelligence components in the platform. 

Section 5 details the Policies and Data Governance (PAG) module, which functions as a 
central authority for data management across the platform. It ensures compliance with privacy, 
quality, and access requirements, while aligning with regulatory and ethical standards. 

Finally, Section 6 presents the development of the Threat Detector and Mitigation Engine 
(DEME), designed to operate in complex and distributed environments. This module employs 
specialized algorithms to analyze network parameters, protocol headers, and real-time traffic 
from various network elements and virtualized functions (VNFs), with the goal of detecting and 
mitigating potential threats. 

This final deliverable reflects the maturity of all WP3 modules, which are now stable and ready 
to be integrated into the full HORSE platform as part of the ongoing activities in WP5. 
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2 Development of the Sandboxing 

2.1 Impact Analysis Digital Twin 

The Impact Analysis Digital Twin has been deployed in Kubernetes [1] using mainly 
Kubernetes Network Emulator (KNE) [2]. The topology has been updated in the iteration 2 and 
the new one is shown in the following Figure 1: 

 

Figure 1: Network topology for iteration 2. 

 

In this new network topology, we have included two gNBs, four routers, two UPFs, a MEC 
server, a DNS server and an Application Server jointly with the DNS clients on the 5G Core, 
deployed with Open5GS [3][3], [4]. 

The Impact Analysis Network Digital Twin has been improved by adding some automation 
mechanisms (using Ansible scripts) to make the deployment easier and faster. 

The general architecture of the Impact Analysis Digital Twin is: 
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Figure 2: Architecture of the Impact Analysis Digital Twin. 

In Figure 2 we can see that the IA-NDT is made up of different modules: 

Network Digital Twin 

Is the module that has the pods itself representing the different blocks of the topology 
previously described. The deployment of the Kubernetes cluster has been made using different 
dependencies such as Golang, Docker, kubectl, Kind and KNE in a Linux server. 

Here, also is deployed a Prometheus [35] instance to get the different metrics from the NDT. 

Orchestrator 

UMU's security orchestrator1 enables mitigation policies to be applied to an infrastructure, 
whether physical or virtual. Underneath, it is composed of plugins for translation and device-
specific drivers that execute the action.  

The policy format is MSPL, a cybersecurity policy-oriented XML. These policies have different 
purposes, such as applying Filtering, QoS, both on routers and hosts, modifying service 
configurations such as DNS or NTP, etc. 

Policy Translator 

The Policy Translator is a translation module that acts as an intermediate point between the 
IBI (for applying mitigations) or EM (for simulating attacks) and the orchestrator. Its function is 
to translate the outputs of these HORSE components into a valid format for the orchestrator, 
MSPL. It also allows setting timers and managing the creation/deletion of policies. 

2.1.1 Interfaces 

Regarding the modules that communicates with the Impact Analysis Digital Twin, it has 
different interfaces, all of them managed via REST API: 

- Intent-Based Interface (IBI): manages the what-if scenarios by sending the metrics 
that the NDT must monitor and send back the specific measures. 

 

1 For more details about the UMU testbed please refer to D5.2 
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- Early Modelling (EM): informs the NDT about the specifications of the attack and 

scenario to deploy it. 
 

- Smart Monitoring (SM): sends the information about the topology that will be used for 
the different scenarios. 

2.2 Prediction and Prevention Digital Twin 

The Prediction and Prevention Digital Twin is built on the Comnetsemu network emulation 
software [10], [11]. Comnetsemu is based on the well-known mininet network emulator [12], 
with the integration of a docker-in-docker environment to enable the deployment of services 
as docker containers. In this way, it is possible to emulate a 5G SA or NSA architecture by 
exploiting the available open-source implementations of the 5G core and access networks. 

All employed software, including Comnetsemu, is publicly available and open source. 

Mininet is a well-recognized Software Defined Networking network emulator. It is characterized 
by a stable and realistic performance, as demonstrated in [13], as well as some limitations in 
extremely large emulation scenarios [14]. Comnetsemu builds up on top of such realistic 
network emulation to enable to deploy actual service containers, thus generating a realistic 
workload and enabling to build realistic scenarios for current and next-generation networks.  

Prediction and Prevention Digital Twin includes the following modules: 

• Digital Twin Modelling module: it is responsible for generating the DT based on the input 
data (traffic and topology information, orchestrated services, etc.) 

• Digital Twin Engine module: it will run the DT in the Comnetsemu emulation environment. 

• Digital Twin-based Prediction module: it will analyze the output of the DT Engine block using 
AI/ML algorithms to perform predictions and identify anomalies. 

• I/O Interface module: interface with DTE / IBI for receiving requests and providing the 
related outcomes. 

 

 

Figure 3: The structure of the Prediction and Prevention Digital Twin (from HORSE D2.2). 
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The Prediction and Prevention Digital Twin is available to the HORSE platform as a Virtual 
Machine. Deployment of the VM is performed through Vagrant. 

All modules are developed in Python. The following sections describe how the internal modules 
are developed. 

 

Digital Twin Modelling module 

This module generates the script for replicating the Physical Twin of the 6G network into the 
Digital Twin.  

This module receives in input via REST APIs a YAML descriptor of the network topology and 
the known services running in the network. The format for data collection is common for the 
entire HORSE sandbox, and it is the same as for the Impact Analysis Digital Twin. An example 
of the format of the file is as described in Section 2.1.2. Based on such information, it generates 
a script file to build the network and services in the Comnetsemu environment and to run the 
Digital Twin in the sandbox. 

The following represents an example of a script for deploying a simple topology in mininet or 
Comnetsemu: 

from mininet.topo import Topo 

 

class MyFirstTopo( Topo ): 

    "Simple topology example." 

    def __init__( self ): 

        "Create custom topo." 

        # Initialize topology 

        Topo.__init__( self ) 

        # Add hosts and switches 

        h1 = self.addHost( 'h1' ) 

        h2 = self.addHost( 'h2' ) 

        h3 = self.addHost( 'h3' ) 

        h4 = self.addHost( 'h4' ) 

        leftSwitch = self.addSwitch( 's1' ) 

        rightSwitch = self.addSwitch( 's2' ) 

        # Add links 

        self.addLink( h1, leftSwitch ) 

        self.addLink( h2, leftSwitch ) 

        self.addLink( leftSwitch, rightSwitch ) 

        self.addLink( rightSwitch, h3 ) 

        self.addLink( rightSwitch, h4 ) 

 

topos = { 'myfirsttopo': ( lambda: MyFirstTopo() ) } 
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The module receives as input via REST APIs also a YAML/XML descriptor of the attack or 
scenario to evaluate. This will be translated into a set of commands to deploy additional 
components in the Digital Twin and run/replicate network traffic. 

 

 

Digital Twin Engine module 

This module implements the Digital Twin. The Digital Twin is built in the Comnetsemu 
environment, enabling a precise emulation of an SDN network and faithful replication of 
services by deploying them in docker containers. 

As an example, the following Figure 4 represents how a simple 5G network with Mobile Edge 
technology can be replicated in form of a Digital Twin in Comnetsemu. 

 

 

Figure 4: A block diagram on the deployment of 5G in Comnetsemu 

 

Digital Twin-based Prediction module 

This module is aimed at predicting relevant scenarios in order to signal potential treats or other 
performance degradations to the HORSE architecture. In the first implementation, it will be 
able to detect traffic peaks and potential congestion as well as some types of security attacks. 

 

I/O Interface module 

The Digital Twin offers a REST API for interaction with the other modules of the HORSE 
architecture, as well as for most of the interactions among its internal modules. A Swagger 
interface is provided to enable fast and efficient testing of the proper operation of all offered 
functionalities. 

 

Interfaces with other HORSE modules 

The Prediction and Prevention Network Digital Twin interacts runtime with two modules of the 
HORSE architecture: the Early Modeling module and the Distributed Trustable AI Engine 
module. In both cases the interaction is performed through REST API interfaces and JSON 
files. 
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The Early Modeling module provides in input to the NDT information about potential attacks, 
and it can focus the analysis of the NDT towards specific nodes, by providing IP addresses 
and ports. 

The NDT provides in output to the Distributed Trustable AI Engine any notification about 
potential anomalies and attacks, in order to trigger a most precise identification of the attack 
parameters through AI/ML and to select the most appropriate mitigation actions. 

The exposed ports are configurable through a proper “config.ini” file in the software distribution. 

 

Digital Twin Management Interface 

The Prediction and Prevention Network Digital Twin offers an internal management interface 
in order to enable other modules as well as the network manager to interact with the NDT and 
to trigger actions or perform measurements. 

The management interface provides a set of REST APIs, and it is accessible through two 
TCP/IP ports: 

• Port 8501 (default): it enables to control the parameters of the network emulator 
embedded in the NDT (comnetsemu) and to issue simple commands to collect the 
status of nodes and containers, and to run commands in the nodes or switches of the 
topology. This REST interface is developed using Python FastAPI framework, and it is 
based on SWAGGER. This allows to provide full documentation directly online. 
As an example: 

o http://192.168.130.9:8501/ provides access to the main internal dashboard 
(built on Streamlit Python software) 

o http://192.168.130.9:8000/ checks the status of the NDT (if everything is 
correct, then the answer is a simple JSON file: {"Digital Twin":"Ready"} ) 

o http://192.168.130.9:8000/docs provides access to the SWAGGER FastAPI 
interface and helps quick interaction with the NDT (see figure below) 

o http://192.168.130.9:8008/ provides access to the sFlow network monitoring 
software (for topology and bandwidth analysis) 

 

 

http://192.168.130.9:8501/
http://192.168.130.9:8000/
http://192.168.130.9:8000/docs
http://192.168.130.9:8501/
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Figure 5: The SWAGGER REST API of the Prediction and Prevention Network Digital Twin. 

 

• Port 3000 (default): this port is connected to an internal Grafana data rendering 
instance, which is connected to several container metrics and other performance 
parameters. Through Grafana it is possible to perform analysis of the data e.g. related 
to CPU utilization and load for each container in the NDT, or measure throughput on 
different virtual interfaces. 
The interface is available connecting to the IP address of the P&P NDT on port 3000. 

 

The exposed ports are configurable through a proper “config.ini” file in the software distribution. 

Additional details on the execution and configuration of the Prediction and Prevention Network 
Digital Twin are available in the corresponding section of the github repository of the HORSE 
project. 
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3 Development of the Early Modeling framework 

The Early Modelling module is developed to supply the Sandboxing module with all the 
essential data it needs to operate effectively. This module is structured around two core 
elements: Taxonomy and Attributes. The Taxonomy component focuses on identifying and 
categorizing potential threats and attack scenarios relevant to the 6G environment. Meanwhile, 
the Attributes component outlines the methodology and criteria used to assess how these 
attacks could affect 6G components, as well as to evaluate the effectiveness and 
consequences of various mitigation and prevention strategies. The overall architecture of the 
Early Modelling module is illustrated in Figure 6. 

  

Figure 6: Early Modelling components. 

 During the initial phase of the project, the Early Modelling module focused on developing a 
threat model to characterize the different types of 6G cyberattacks. This model was structured 
around several key components: 

• Vulnerability: Refers to weaknesses or flaws in a system that can be exploited by 
adversaries. The meta-model leverages the concept of an attack surface to describe 
these vulnerabilities in detail. This includes aspects such as user equipment, network 
infrastructure, and exposed services that could be targeted. 

• Organizational Assets: Encompasses the critical assets and devices within an 
organization that are of interest to threat actors. These represent the potential targets 
an adversary seeks to exploit. 

• Threat Actor: Defined as a malicious entity with the intent and motivation to 
compromise a system. The meta-model classifies threat actors based on their origin 
(internal or external to the system) and assesses their skill level using a Likert scale. 

• Tactics, Techniques, and Procedures (TTPs): Represents the methods and 
strategies employed by attackers to achieve their objectives. This includes the overall 
approach (tactics), specific means of execution (techniques), and concrete steps 
(procedures) used during an attack. 

• Threat: A threat is a potential harmful event that arises due to the presence of a 
vulnerability. It may arise from weaknesses identified in the ENISA threat landscape, 
specific use case activities, adversarial behaviour, or observable patterns. 

• Cyberattack: Describes the actual malicious action carried out by a threat actor who 
exploits system vulnerabilities to cause harm or disruption. 

• Control Actions: Refers to the set of countermeasures designed to address an attack. 
These include mitigations, preventive and corrective measures aimed at reducing the 
risk or impact of an attack. 

Deliverable D3.1 [15] provided a detailed description of each element, as well as its type and 
scope in the HORSE architecture. 

In the second period of the project (IT-2), the complete set of attacks considered in HORSE 
has been modelled. These includes the DNS amplification, NTP DDoS, and DDoS Downlink 
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attacks. Each of these attacks was characterized using the threat model’s core elements: 
threat actor, cyberattack, organization assets, tactics-techniques-procedures (TTP), impact, 
and information on mitigation and control actions, including the mitigation and preventive 
actions to be enforced when an attack is detected or predicted.  

Figure 7 presents the updated threat model, which incorporates new design requirements to 
better support both the description of the attacks and the corresponding impact analysis. 
Specifically, the cyberattack vector element has been extended to support specific details 
about the attack, as well as the organizational assets to support network-specific features, 
including details about nodes and ports as defined in the network topology. 
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Figure 7: Threat model 
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3.1 Threat model XML schema 

An XML schema has been specified for the meta-model to allow its complete representation. 

This schema is based on the initial one elaborated during the first phase of the project and it 

has been updated to support the extensions for the cyberattack vector and organizational 

asset, as depicted in Figure 8 and Figure 9. 

 

Figure 8: CyberAttackType XML element 

 

  

Figure 9: NetworkFeaturesType XML element 

    

3.2 Attacks modelling in the HORSE framework 

This section presents the modelling done for the attacks including the DNS amplification and 
NTP DDoS attacks. 

3.2.1 DDoS DNS amplification  

This section presents the modelling of the DNS amplification attack to demonstrate how the 
threat model captures this attack scenario. In the proposed XML schema, the 
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<ThreatModel> element encapsulates all relevant components depicted in Figure 7, while 

also integrating additional information necessary for Prediction and Prevention DT to monitor 
key parameters during the prediction of the attack. These parameters are specified under the 
<vector> element, as illustrated in Figure 8. The <CyberAttack> element serves as a bridge 

to map the attack scenario to known adversarial tactics, techniques, and procedures (TTPs) 
by referencing established threat intelligence frameworks. Specifically, to align with the MITRE 
ATT&CK framework, we associate the attack with its corresponding technique by including the 
relevant ID and type attributes. For the DNS amplification scenario, this is represented as 

ID="T1498.002" and type="Network Denial of Service: Reflection Amplification". 

 

 

Figure 10: DDoS DNS amplification attack 

  

  

3.2.2 DDoS NTP 

The proposed threat model also has been used to model the DDoS NTP attack, as illustrated 
in Figure 11. In this scenario, the attacker exploits a Network Time Protocol (NTP) server, 
typically by leveraging the monlist command to amplify traffic. The DDoS NTP XML file 
suggests to the Prediction and Prevention DT to monitor the volume of packets associated 
with the NTP monlist, as illustrated in Figure 11. To prevent the system against such an attack, 
it is necessary to enforce mitigation strategies and implement conditions to filter UDP-based 
traffic. 
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Figure 11: DDoS NTP attack 

3.3 I/O interface for the Early Modeling module 

The early modelling framework offers a FastAPI endpoint for the other modules of the HORSE 
architecture. The JSON input and XML output have been defined for the API endpoints.  The 
exposed ports will be configurable through a proper “config.json” file in the software 
distribution. Moreover, the early modelling is configured to connect with the default network 
generated by the Knowledge base and communicate with the API to fetch the mitigation 
actions. The url and port can be specified in the config.json file. The Docker compose file 
configuration might need to be modified as per the configuration of the Knowledge base. 

Input API endpoint can be triggered using the Curl command as presented below. 

curl --location 'http://127.0.0.1:8000/xml-scheme/'  
--header 'Content-Type: application/json'  
--data '{ "CyberAttack": { "Type": "DDoS Downlink", "Vector": { 

"attack_timestamp": "2024-04-28T19:21:44.613Z", "attack_location": "DNS 

server", "Asset_IPAddress": "192.255.255.200", "Parameters": { 

"Description":"11 of DNS packet received per second", "Protocol":"12", 

"Flag":"123", "Duration":"321" } } }, "OrganizationAssets": { 

"Network_feature": { "Node": { "Node_Id": "1", "Node_name": "Server", 

"Node_Type": "primary", "Node_Area": "", "Node_IPAddress": "192.168.0.200" 

}, "Ports": { "Port_Id": "1", "Port_Number": "53", "Port_Type": "UDP", 

"Port_Status": "Open" } } }, 
 "ThreatActor": { "Source":"", "ThreatActor_IPAddress": "", 

"ThreatActor_Group": "", "ThreatActor_Technique": "", 

"ThreatActor_Intension": "" }, "TTP": { "Tactics": "", "Techniques": "", 

"Procedure": "" }, "Vulnerability": { "Source": "", "Destination": "", 

"Timestamp": "" 

}}' 

 

The XML file will be sent to the specified endpoint whenever it is generated. The endpoint 
information needs to be added in the config.json file. 

 

http://127.0.0.1:8000/xml-scheme/
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curl --location --request POST 'http://192.168.130.51:8000/fetch-xml-

schema'  
--header 'Content-Type: application/json'  
--data '' 

 

 

http://192.168.130.51:8000/fetch-xml-schema
http://192.168.130.51:8000/fetch-xml-schema
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4 Development of the Distributed Trustable AI Engine 

4.1 Introduction 

The Distributed Trustable AI Engine (DTE) is a main component of the HORSE architecture 
that sends the appropriate intents to the IBI after an attack is identified. DTE receives inputs 
from the DEME at periodic time intervals, with a predefined confidence level as well the 
identified type of the attack and the involved nodes of the HORSE platform. This information 
is internally processed in the DTE via AI/ML approaches in order to identify the appropriate 
intents per case. The advices from the DEME are sent using REST HTTP requests to the DTE. 
In the same context, DTE can also receive data in the form of policies from PAG, via REST 
APIs. 

DTE performs data management prior to the actual training, by employing the appropriate 
policies for anomaly detection (tampered data), as well as data anonymisation. In addition, 
DTE guarantees compliance of the proposed solutions with the policies module. In the next 
step, mitigation measures and methodologies from well-established knowledge bases, such 
as the MITRE ATT&CK are exploited from both the DEME and DTE in order to build the 
appropriate mitigation intents. 

 

 

Figure 12: The DTE component within the HORSE architecture 

4.2 Internal components of the DTE 

The internal components of the DTE are shown in Figure 13. These include the NWDAF 

aggregator, the Data Processing Module, the ML Model Training Module, the ML Model 

Evaluator, the ML Model Repository as well as the Intent Creator. The NWDAF aggregator 

receives all data from distinct NWDAF instances that are deployed within the HORSE network. 

In Data Processing Module, since the collected data might be heterogeneous, they are 

properly processed in order to be used for the actual ML model training. In this module, the 
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training of various ML approaches can be supported. As it will be also explained in the next 

section, performance metrics include F1-score, accuracy, etc which are evaluated via the ML 

Model Evaluator. The best performing models are stored in the ML model repository. At the 

final stage, the intent to be send in the IBI is created via the Intent Creator module. 

 

 

Figure 13 : The internal components of the DTE.  

4.3 Datasets and performance evaluation of the DTE 

The ML training is the main module of the DTE where various models are trained for different 
types of attacks. These will include supervised, unsupervised, and deep reinforcement learning 
approaches [16]. For this purpose, various datasets were exploited, representing diverse 
attacks and network topologies. These datasets are provided i) from HORSE partners, ii) from 
the NKUA Open5GS and UERANSIM-based testbed, being able to replicate 5G core network 
attacks, as well as attacks on the 5G RAN, and iii) open datasets that have been used from 
relevant works on 5G attack scenarios.  

At this final stage, four different datasets from the literature have been analysed together with 
ML model training and evaluation: 

• The first one is a synthetic 5G cellular network data for NWDAF [17], that is based on 
Open5GS and UERANSIM. In this context, a topology with a fixed number of subscribers 
and cells with different traffic patterns and anomalies has been considered, where the 
anomaly is defined as an unexpectedly high network traffic compared to the average 
network traffic, fading and stabilizing in time.  

• The second dataset is the 5GAD-2022 5G attack detection dataset [18], that is based on 
Free5GC and UERANSIM. In this case, two types of intercepted network packets are 
included: "normal" network traffic packets and "attack" packets from attacks against a 5G 
Core implemented with free5GC. The captures were collected using Tshark or Wireshark 
on 4 network interfaces (N2, N3, N4, N6) (AMF, gNB, UPF, SMF, DN) within the 5G core. 
10 attacks were implemented, mainly relying on REST API calls to different parts of the 
core.  

• The third dataset [19] was generated on an Open5GS and UERANSIM-based testbed. 
Here, an SMF instance networked in parallel to the original network function acts as the 
attacker’s entry point to the virtualised infrastructure and targets the N4 interface between 
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the SMF and the UPF. The hijacked SMF executes the cyberattacks against the UPF. In 
order to obtain this data set, the network traffic data of each entity/device was captured 
through Tshark for each network function and radio element.  

• The fourth data set, titled 5G Network Intrusion Detection Dataset (NIDD) [20] contains data 
in both packet-based format as well as in flow-based formats. 5G-NIDD is generated using 
the 5G Test Network (5GTN) in Oulu, Finland, thus providing a close resemblance to a real 
network scenario. 5G-NIDD presents a combination of attack traffic and benign traffic under 
different attack scenarios, falling into the Distributed Denial of Service (DDoS) and Port 
Scan/Reconnaissance categories.  

For these datasets, various ML models have been evaluated by the ML model evaluator 
module for predefined ML metrics, such as accuracy and F1-score. It should be noted that 
apart from evaluating the anomaly detection performance of different ML models, e.g. support 
vector machine (SVM) with binary kernel for the N4 interface attacks, these attacks have 
already been replicated at the NKUA testbed and data are collected, as well as logs from 
various NFs, i.e. AMF, SMF and UPF. After the initial ML model evaluation phase is over, two 
distinct actions can take place: i) retraining of the ML model in case its performance is below 
the desired level, or ii) storage of the model in the ML repository, for retrieval in future potential 
attacks. 

 

Figure 14: The FLOWER concept in DTE. 

4.4 Final extensions with respect to IT-1 

In the final release of the DTE, federated learning (FL) was also applied, where each NWDAF 
instance is responsible for data collection and aggregation in a distinct set of mobile nodes, as 
shown in Figure 14 In this case, there are multiple DTE instances per subgroup of nodes, 
where each one trains locally the corresponding models with the available datasets. 
Afterwards, the master DTE model with the NWDAF aggregator is responsible for updating the 
global parameters and informing the individual nodes for their updated values. For this 
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purpose, the FLOWER concept was applied, that can train multiple nodes in an FL fashion 
[21]. In the Table below, all major differences among IT-1 and IT-2 are summarized. 

 

 

 

 

 

 

Feature Original: HORSE + BentoML Updated: HORSE + BentoML + FLower 

(Federated) 

Architecture Type Centralized Federated Learning (1 server, 2 clients) 

Data Locality Central — data aggregated at one node Decentralized — data stays on each simulator 

Model Training Trained offline, served via BentoML Federated training with model updates per 

client 

Model Serving BentoML API server (REST or gRPC) BentoML inside each Flower client for 

inference 

Model Update Flow Manual retraining / offline CI/CD Auto via FLower round-based aggregation 

Privacy Low — raw data required at central 

point 

High — raw data stays local 

Network Dependency Low (no sync required between 

machines) 

High (needs synchronization with Flower 

server) 

Real-Time Detection Possible with BentoML service endpoint Possible per client; global insight delayed 

Deployment Dockerized BentoML service Dockerized Flower client + BentoML per node 
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Aspect Before (Centralized: HORSE 

+ BentoML) 

Now (Federated: HORSE + BentoML + 

FLoWeR) 

1. Data 

Handling 

- All data collected centrally 

- Preprocessed in one place 

- HORSE logic applied 

globally 

- Data remains local per simulation - Each node 

runs HORSE independently - Only model 

weights are shared (privacy-preserving) 

2. Model 

Serving 

- bentoml.Model exposed 

via REST/gRPC - Centralized 

API for external inference 

- Each Flower client runs BentoML locally - 

Inference is local-only unless explicitly exposed 

3. Model 

Training 

- Manual or CI/CD-triggered 

training - Static or offline 

updates - HORSE rules 

embedded into periodic 

model refresh 

- Training distributed via federated rounds - 

Each client trains on local recent data - Server 

aggregates updates and redistributes 

4. 

Security/R

esilience 

- Central model is a single 

point of failure - Model 

poisoning or threshold flaws 

affect the whole system 

- Semi-autonomous clients - Failures or 

poisoned updates are localized - More resilient 

to region-specific anomalies or attack vectors 

5. 

Deployme

nt 

- Single Docker container 

per deployment - Simple 

stack (HORSE + model + 

BentoML) - Easy with 

Docker Compose or K8s 

- Multiple coordinated containers: 1 Flower 

Server + N Flower Clients - Each client runs its 

own BentoML & model stack - Requires Docker 

networking across instances 

6. 

Monitoring

/Eval 

- Centralized logging and 

metrics collection - Easy 

benchmarking, debugging, 

versioning 

- Decentralized monitoring per Flower client - 

Flower server only sees updates, not full 

context - Local metrics must be pulled 

manually or exposed through logging layers 
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5 Development of the Policies and Data Governance 

5.1 Overview 

The Policies and Data Governance (PAG) component is a data processing service built with 
NestJS[26]. It is designed to harvest Packet Capture (PCAP) data in JSON format from the 
Smart Monitoring component. Subsequently, the PAG handles and anonymises sensitive 
information, and finally it stores the anonymised PCAP data back into the storage indexes of 
the Smart Monitoring component. The service uses Redis[27] and Bull[28] for job queue 
management and scheduling, ensuring efficient and scalable processing. 

5.2 Key Features 

PCAP Data in JSON Format 

The input to fetch the service is PCAP data which is converted into JSON format. Each record 
contains network-related metadata, such as “from” and “to” IP addresses, payload, 
timestamps, and protocol details. 

Service Activation via Cron Jobs 

A cron job is scheduled to run periodically. The cron job enqueues tasks into a Redis-backed 
queue, which are then processed asynchronously. 

Ad-hoc Service Activation 

The component has implemented a manual trigger for the service, in order to enable ad-hoc 
use and testing. 

Data Read/Write Operations 

Read: The service fetches PCAP data from the storage of the Smart Monitoring component, 
which is an Elasticsearch index. 

Write: The service writes anonymised PCAP data back to a separate Elasticsearch index of 
the Smart Monitoring component. 

Custom Anonymisation 

Sensitive fields such as IP addresses, payload content and International Mobile Equipment 
Identity (IMEI) numbers are anonymised using custom logic. The anonymisation logic is 
modular and reusable, ensuring flexibility for different data structures. 

5.3 Technologies Used 

Framework: The application is built using NestJS, a progressive Node.js framework for building 
scalable server-side applications. 

 

Modules: The application is modularised. 

• ElasticModule: handles all the interactions with Elasticsearch. 

• Provides methods for: 
o Harvesting PCAP data using the scroll API. 
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o Writing anonymised PCAP data back to the Elasticsearch index. 

 

• QueueJobsModule: manages job queueing and processing. 

• Functions: 
o JobSchedulerService: Periodically enqueues jobs using a cron job. 
o QueueJobsProcessor: Processes jobs from the queue. 

 

• AnonymisationModule: contains the logic for anonymising sensitive fields in the PCAP 
data. 

• Modular and reusable for different data structures. 

 

Redis: It acts as a backend for job queue management. Redis is integrated with the Bull library 
for managing and processing jobs. 

 

Bull: This is a queueing library for handling job scheduling and processing. Jobs are enqueued 
by the cron job and processed by a queue processor. 

 

Environment Variables: the service uses the following environment variables, typically stored 
in an .env file. 

# Redis Configuration 

REDIS_HOST=redis 

REDIS_PORT=6379 

 

# Elasticsearch Configuration 

ELASTICSEARCH_URL=http://elasticsearch:9200 

ELASTICSEARCH_INDEX=pcap-data-local 

ELASTICSEARCH_ANONYMIZATION_INDEX=pcap-data-anonymization 

5.4 How It Works 

Data Flow 

• Input: The service harvests PCAP data in JSON format from the Elasticsearch index of 
the Smart Monitoring component. 

• Processing: 
o The PCAP data is fetched in batches using Elasticsearch scroll API. 
o Sensitive fields (e.g., “from” and “to” IP addresses, payload content, IMEI) are 

anonymised using custom logic. 

• Output: The anonymised data is written to a separate Elastisearch index of the Smart 
Monitoring component. 
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Communication 

A cron job is scheduled to run periodically (configurable; currently set to run every day at 
midnight). The cron job enqueues tasks into jobs using the Bull package. The queue processor 
fetches the tasks and processes them asynchronously. 

 

Custom Anonymisation Logic 

IP Addresses: masked with X (e.g. X.X.X.X) 

Payload: masked with a string [REDACTED_PAYLOAD] 

IMEI: masked with a string [ANONYMISED_IMEI] 

 

Sequence Diagram 

 

Figure 15: Sequence Diagram 
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6 Development of the Threat Detector and Mitigation 
Engine 

6.1 Threat Detector and Mitigation Engine Features 

The functionalities of the Threat Detector and Mitigation Engine (DEME) module are fully 
consistent with the specifications outlined in the IT-1 deliverable (D3.1 HORSE Platform 
Intelligence developed (IT-1)  [15]) and remain aligned with the architectural requirements and 
design principles established in the WP2 deliverables, ranging from D2.1 [6] (HORSE 
Landscape: Technologies, state of the art, AI policies and requirements (IT-1)) and D2.2 [7]  
(HORSE Architectural Design (IT-1) through to the most recent D2.3 [8] (HORSE Landscape: 
Technologies, state of the art, AI policies and requirements (IT-2) and D2.4 [9] (HORSE 
Landscape and Architectural Design). 

In the context of the HORSE architecture, and as illustrated in the overall block diagram 
(recalled here for clarity in Figure 16), the system is organized into three key conceptual layers: 

 

• Intent-Based Interface (IBI) – This layer serves as the entry point for high-level directives, 
allowing network administrators or intelligent software agents to express desired 
outcomes without needing to manage low-level configuration details. Its primary role is to 
abstract and simplify network control through intent-driven interactions. 

 

• AI Secure and Trustable Orchestration (STO) – Operating as the intermediary control 
logic, this layer is responsible for the dependable orchestration of network resources. It 
ensures that the intents expressed via the IBI are correctly interpreted and translated into 
executable actions, enforcing the corresponding policies while maintaining system 
reliability and trustworthiness. 

 

• Platform Intelligence Layer (PIL) – This layer introduces advanced intelligence and 
autonomy into the system. It includes multiple sub-modules capable of analyzing, 
predicting, and optimizing network behavior. Among these, the DEME module (situated in 
the “Real Context” section) is specifically designed to identify, assess, and respond to 
security threats in real time, leveraging network behavior analysis and anomaly detection. 

 

The DEME module plays a critical role in this architecture by enabling the platform not only to 
detect threats but also to initiate appropriate mitigation strategies autonomously, thereby 
enhancing the overall security and resilience of the HORSE system. 
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Figure 16: DEME sub-module in the overall architecture [9]. 
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6.2 Threat Detector and Mitigation Engine Interfaces 

6.2.1 Ingress Interface 

 

The Ingress interfaces have not been modified since the previous iteration (IT-1) D3.1 [15], as 
the evolution of the project did not require any changes in this area. As a result, the efforts 
were focused on testing and validating the existing interfaces 

6.2.2 Egress Interface 

 

The same applies to the egress interfaces, for which no modifications or additions were 
necessary; the efforts focused about testing and validation activities 

6.2.3 Additional Interfaces (E.g. Digital Twin) 

 

As for potential additional interfaces between the DEME module and other subsystems within 
the framework—interfaces that were not defined during the first iteration and were not further 
explored during IT-2, which focused on other aspects as detailed in the WP2 deliverables 
[6],[7],[8], and [9]—these could be easily integrated in future evolutions of the HORSE 
framework beyond the project’s official end. This is made possible by the fact that the DEME 
module has been developed using modern, modular, and extensible software design 
principles. 

6.3 DEME Implementation overview 

6.3.1 Background 

This section describes how to check prerequisites, install the toolkit and verify it has been 
correctly installed. A basic understanding of shell scripting and Docker is assumed. 

The following terminology is used throughout: 

• Client: the host from which commands are issued to the Server. 

• Server: the host where workloads are executed. 

All commands are intended to be run from the Client. It is assumed that Client and Server are 
separate hosts. 

6.3.2 Prerequisites 

• Docker must be installed on your local machine. 

• Navigate to the root folder of the toolkit in order to proceed with the installation process. 

https://ericsson-my.sharepoint.com/personal/orazio_toscano_ericsson_com/Documents/Lavoro/ProgettiFinanziati/6Green/WP3/6Green_Budget+Effort+WP+Deliverables_vSubmitted.xlsx?web=1
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6.3.3 Installation 

• Build the Docker image for the server by running the following script: 

 

 

Figure 17: Docker Image building script 

 

• Start the server using the command: 

 

 

Figure 18: Server start command 

 

Where : 

o <version> is the minor version number. 

o <number of instances> specifies how many nodes are to be monitored, 

o <list of the features to be monitored> refers to the features to be monitored (e.g., 
NEF or NEF,NTP). 

 

• Verify that the server is running correctly by sending a GET request to: 
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Figure 19: Correct running state vérification 

 

• A successful response should return: 

 

Figure 20: Expected response 

6.3.4 Interfaces 

1. Management Methods 

No changes on respect to deliverable 3.1 [15].  

 

1.  Operational Methods  

No changes on respect to deliverable 3.1 [15] except for the following API that has been added: 

 

HTTP 
Method  

Path  Action  

POST  /reset_db 
Reset the training to original values removing 
the data coming from the runtime elaboration 

 

2.  Extraction Methods 

No changes on respect to deliverable 3.1 [15]. 
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6.3.5 Usage 

No changes on respect to deliverable 3.1 [15]. 

6.3.6 Debugging tools 

No changes on respect to deliverable 3.1 [15]. 

6.3.7 API-based attacks: unauthorized access to the Network Exposure 
Function (NEF) 

The DEME threat detection module was designed from the outset to incorporate the most 
advanced Machine Learning technologies, aiming to address the ever-evolving landscape of 
cyber threats with innovative approaches. Its goal is to detect a broad range of attack vectors, 
including the increasingly dangerous and unpredictable zero-day attacks. During the second 
phase of the project, DEME was thoroughly tested against several types of threats to assess 
its effectiveness. While post-integration testing within the complete platform (covered 
extensively in WP5, which includes HORSE integration, use case deployment, platform 
validation, and final release) is absolutely crucial, it is also best practice to thoroughly test each 
module in isolation during development.  

. In Python, this typically involves writing unit tests (e.g., using frameworks like unittest or 
pytest) and also conducting more advanced integration-level tests that simulate how the 
module interacts with external systems or services. These represent two increasingly 
sophisticated levels of validation that allow for comprehensive debugging of the module’s 
internal logic and its interfaces. By ensuring robustness early on, integration efforts can then 
focus exclusively on higher-level platform-specific concerns, rather than module-level issues 
that could have been addressed in isolation. 

In line with this approach, DEME has followed all recommended standalone testing practices 
under WP3, which focuses on the module-level validation phase, prior to integration. One 
particularly concerning scenario examined—especially relevant for future 6G networks—is the 
so-called “unauthorized access to the Network Exposure Function (NEF),” as described by the 
MITRE framework [25]. In such cases, an attacker controlling an external Application Function 
(AF) may exploit a fraudulent OAuth access token to illegitimately invoke NEF services. NEF 
is a critical component in mobile networks, exposing sensitive functionalities—such as device 
analytics, user traffic routing, location tracking, and mobility events—to authorized third-party 
applications using secure protocols like TLS and OAuth 2.0. However, a malicious AF can 
bypass these safeguards by presenting a stolen or manipulated token, gaining access to 
sensitive data and potentially enabling further attacks, such as man-in-the-middle (MITM) or 
eavesdropping. These types of intrusions are particularly dangerous because they are often 
discovered only after a long time, causing significant damage in terms of data breaches and 
privacy violations. As highlighted in specialized literature [24], API-based attacks now 
represent one of the most serious security threats to modern businesses, as APIs offer direct 
access to key data and services. Attackers are increasingly aware of the widespread use and 
known vulnerabilities of these interfaces. While code injection attacks are still common—
typically requiring some prior knowledge—brute force attacks remain among the most widely 
used due to their simplicity and effectiveness. In a brute force attack, an attacker bombards an 
API or application with repeated requests, attempting to guess authentication credentials, 
secrets, or access tokens through trial and error. In light of these growing threats, DEME has 
already addressed and evaluated these new forms of attacks during Iteration 2, ensuring it is 
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robust and ready for integration. The following image illustrates an example snapshot of the 
specific tests performed. 

 

 

 

Figure 21: API based attack 

 

6.3.8 Exploratory activity 

 

One of the key strengths of DEME’s internal architecture lies in its innovative use of a pipelined 
tree structure. This design allows for the flexible integration and combination of various 
machine learning (ML) techniques in the search for the most effective forecasting solution. 

During the first phase of experimentation, a diverse range of algorithms was tested—including 
an Ericsson custom one (patent protected [22]), ARIMA, Random Forest, XGBoost, and 
Logistic Regression—to identify the most promising approach. Among these, ARIMA 
demonstrated the best performance. 

In the second iteration, the focus shifted to comparing ARIMA with TimesFM [23], a more 
recent and advanced time-series forecasting model developed by Google. TimesFM is a pre-
trained model built on extensive real-world time-series data and is capable of generating 
forecasts for previously unseen datasets with adaptable prediction horizons. 

 

This comparison was part of an exploratory analysis aimed at enhancing the performance of 
the threat detection component. The evaluation involved head-to-head testing of ARIMA and 
TimesFM to determine which model delivers more accurate forecasts in the specific context of 
threat identification. 
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As illustrated in the following Figure 22: TimesFM vs ARIMA, test results show that while 
TimesFM represents a significant leap forward in general-purpose forecasting capabilities, 
within our specific use case of the Threat Detector, ARIMA continues to outperform it in terms 
of effectiveness (for more details please refer to following Annex A). 

 

 

Figure 22: TimesFM vs ARIMA 

 

6.3.9 Innovative aspects summarization 

In conclusion, focusing on the innovative dimensions of the project, several groundbreaking 
elements stand out.  

• First, the framework integrates for the first time state-of-the-art machine learning 
technologies within a cybersecurity context alongside equally advanced systems like Digital 
Twins. This synergy enhances the overall detection and response capabilities, producing 
more effective outcomes than any individual technology could achieve alone.  

• Second, in addressing the critical challenge of minimizing detection time—essential to 
ensure mitigation actions are still feasible before a network spirals out of control—the 
system employs fast anomaly detection and learning-based methods. These allow attacks 
to be identified the moment a deviation from expected behavior occurs, without waiting for 
predefined thresholds to be crossed.  

• Third, in line with this goal, detection sources are strategically selected as close as possible 
to the root of the potential threat. For example, in the case of NTP DDoS amplification 
attacks, the system monitors upstream NTP MONLIST queries rather than downstream 
large response packets, significantly reducing detection latency.  

• Fourth, the framework includes both cutting-edge algorithms and custom-developed 
HORSE algorithms, the latter protected by patents [22], reflecting a strong commitment to 
technological innovation.  
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• Fifth, the internal architecture adopts a pipelined tree structure, please see Figure 23, to 
overcome one of the major limitations in traditional cybersecurity ML applications: 
siloization. While many commercial solutions claim broad attack coverage, in practice, ML 
models tend to specialize in specific threat types, operating in isolated silos. This 
architecture addresses that limitation by deploying multiple specialized detectors in parallel, 
whose outputs are then aggregated and correlated in downstream stages. The final Egress 
stage has a unified view of all preceding outputs, enabling it to detect complex or combined 
attacks that would otherwise go unnoticed by isolated detectors.  

• Finally, instead of using a binary on/off attack detection model, this system assigns a risk 
probability or confidence score to each detection event. This probabilistic approach enables 
higher-level reasoning and integration with other intelligent modules, potentially powered by 
complementary technologies, allowing for a more adaptive and intelligent cybersecurity 
response strategy.  

 

 

Figure 23: HORSE Threat Detector Innovative Block Diagram 
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7 Conclusions 

This deliverable marks the completion of WP3 (HORSE Platform Intelligence), summarizing 
the final implementation, refinement, and validation of all the components developed within the 
five WP3 tasks. The modules—previously released in their IT-1 form—have now reached their 
final IT-2 stage, incorporating all planned features and improvements, and are ready for full 
and final integration within the HORSE platform. 

The activities conducted in this final phase have focused on testing, debugging, and ensuring 
consistency with the architectural requirements defined in WP2, while also supporting 
preliminary integration activities in WP5. As WP3 officially concludes at M30, the outcomes 
reported in this deliverable represent the definitive state of the Platform Intelligence layer. 

Going forward, the emphasis will be on WP5, which is dedicated to the integration, validation, 
and final release of the complete HORSE platform. The components delivered here are fully 
aligned and prepared for that next stage, ensuring a smooth transition into final deployment 
and platform-wide interoperability. 
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Annex A - ARIMA Performance Analysis for 
Telecommunications Network Parameter Prediction in 
Cybersecurity Anomaly Detection 

ARIMA Performance Characteristics 

The ARIMA model demonstrated exceptional performance in our telecommunications network 
context, exhibiting several key advantages that align with recent academic findings [29]. The 
model showed remarkable efficiency in terms of computational resources while maintaining 
high predictive accuracy. Notably, ARIMA achieved optimal performance without requiring 
extensive historical datasets for training, a significant advantage in operational environments 
where rapid deployment is essential. 

The model's interpretability proved invaluable for understanding the underlying network 
behavior patterns. The clear statistical meaning of ARIMA's parameters (p, d, q) facilitated both 
model validation and result interpretation, crucial factors in cybersecurity applications where 
understanding the reasoning behind predictions is as important as the predictions themselves. 

Comparative Analysis with Alternative Algorithms 

To validate ARIMA's effectiveness, comprehensive performance comparisons were conducted 
against several established machine learning algorithms, including Random Forest, XGBoost, 
and Logistic Regression. Across all evaluation metrics, ARIMA consistently outperformed 
these alternatives in our specific telecommunications network parameter prediction tasks. 

Furthermore, recognizing the emergence of more advanced forecasting technologies, we 
extended our evaluation to include Google's TimesFM, a state-of-the-art foundation model 
known for its exceptional performance across diverse forecasting applications. Despite 
TimesFM's documented superiority in general forecasting scenarios, ARIMA maintained its 
performance advantage in our specific context of telecommunications network parameters. 

Theoretical Context and Literature Alignment 

Recent academic literature [30][31][32][33] suggests that while modern AI algorithms generally 
demonstrate superior performance across most forecasting applications, classical methods 
like ARIMA maintain competitive advantages in specific scenarios. Our findings strongly 
support this perspective, particularly the observation that ARIMA excels in scenarios involving 
univariate time series with clear seasonal patterns and limited computational resources. 

The success of ARIMA in our telecommunications context can be attributed to the alignment 
between the model's assumptions and our data characteristics. The stationarity requirement, 
often viewed as a limitation, actually represented a strength in our case, as 
telecommunications network parameters naturally exhibit the stationary behavior (after 
appropriate transformations) that ARIMA expects. 

Implications and Future Research Directions 

The superior performance of ARIMA in our specific telecommunications network anomaly 
detection context demonstrates the continued relevance of classical statistical methods in 
specialized applications. However, current research trends indicate significant potential in 
hybrid modeling approaches that combine ARIMA's strengths with modern machine learning 
capabilities. 

Recent studies [34] have shown that hybrid models, such as ARIMA-LSTM combinations, can 
reduce forecasting errors by 18-35% compared to individual models. This finding suggests that 
while ARIMA proved optimal for our current telecommunications network parameters, future 
research iterations should explore hybrid approaches that leverage ARIMA's seasonal 
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modeling capabilities alongside the pattern recognition strengths of modern machine learning 
algorithms. 

Conclusion 

This research demonstrates that ARIMA remains a highly effective solution for 
telecommunications network parameter prediction in cybersecurity anomaly detection 
contexts, particularly when dealing with multi-seasonal time series data. The model's 
combination of interpretability, computational efficiency, and robust performance with limited 
training data makes it an excellent choice for operational cybersecurity systems. 

However, the promising results achieved by ARIMA should be viewed as a foundation rather 
than a conclusion. Future research directions will focus on developing hybrid models that 
combine ARIMA's proven effectiveness in our specific context with advanced machine learning 
techniques, potentially achieving even greater performance improvements while maintaining 
the operational advantages that made ARIMA successful in this telecommunications network 
security application. 

The next experimental phase will therefore concentrate on hybrid solution development, 
representing a natural evolution from our current findings toward more sophisticated and 
potentially more effective anomaly detection capabilities for telecommunications network 
cybersecurity. 

 

 


