
Grant Agreement No.: 101096342

Call: HORIZON-JU-SNS-2022

Topic: HORIZON-JU-SNS-2022-STREAM-B-01-04

Type of action: HORIZON-JU-RIA

D3.2 – HORSE Platform Intelligence
developed (IT-2)

Work package WP 3

Task Tasks 3.1, task 3.2, task 3.3, task 3.4 and task 3.5.

Due date 30/06/2025

Submission date 30/06/2025

Deliverable lead ETI

Version 1.0

Authors Orazio Toscano (ETI), Alessio Formica (ETI), Jose Manuel Manjón (TID),
Juan Tamboleo (UMU), Fabrizio Granelli (CNIT), Malak Qaisi (CNIT), Eva
Rodríguez (UPC), Panagiotis Gkonis (NKUA), Alice Piemonti (MAR), Vito
Cianchini (MAR), Theodoros Velmachos (SUITE5) and Stefanos Venios
(SUITE5)

Reviewers Panagiotis Gkonis (NKUA), Alexandros Katsarakis (STS)

Abstract
This deliverable presents the final development of the modules of the
Platform Intelligence., in terms of software descriptions and technical
details.

Keywords Development, implementation, configuration, installation.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 2 of 46 © 2023-2025 HORSE

DOCUMENT REVISION HISTORY

Version Date Description of change List of contributor(s)

V 0.1 02/05/2025 Table of Contents Orazio Toscano (ETI)

V 0.2

30/05/2025 Introduction Orazio Toscano (ETI)

30/05/2025 Contribution to section 2.1 Jose Manuel Manjón (TID)

30/05/2025 Contribution to section 2.1 Juan Tamboleo (UMU)

30/05/2025 Contribution to section 4 Panagiotis Gkonis, Nikolaos Nomikos, Gerasimos
Patsourakis, Vasileios Nikolakakis, Panagiotis
Trakadas (NKUA)

30/05/2025 Contribution to section 2.2 Fabrizio Granelli and Malak Qaisi (CNIT)

30/05/2025 Contribution to section 5 Stefanos Venio (Suite5)

30/05/2025 Contribution to section 6 Orazio Toscano (ETI)

30/05/2025 Contribution to section 3 Eva Rodríguez (UPC)

V 0.3 02/06/2025 Modifications and comments Orazio Toscano (ETI)

V 0.4 05/06/2025 Modifications and comments All involved partners

V 0.5 20/06/2025 Comments from reviewers
Panagiotis Gkonis (NKUA) and Alexandros
Katsarakis (STS)

V 1.0 30/06/2025 Final reviewed version All involved partners

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 3 of 46 © 2023-2025 HORSE

Disclaimer

Co-funded by the European Union. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the European Union or the other granting
authorities. Neither the European Union nor the granting authority can be held responsible for
them.

Copyright notice

© 2023 - 2025 HORSE Consortium

Project co-funded by the European Commission in the Horizon Europe Programme

Nature of the deliverable: OTHER

Dissemination Level

PU Public, fully open, e.g. web X

SEN Sensitive, limited under the conditions of the Grant Agreement

Classified R-UE/ EU-R EU RESTRICTED under the Commission Decision No2015/ 444

Classified C-UE/ EU-C EU CONFIDENTIAL under the Commission Decision No2015/ 444

Classified S-UE/ EU-S EU SECRET under the Commission Decision No2015/ 444

* R: Document, report (excluding the periodic and final reports)
DEM: Demonstrator, pilot, prototype, plan designs
DEC: Websites, patents filing, press & media actions, videos, etc.
DATA: Data sets, microdata, etc
DMP: Data management plan
ETHICS: Deliverables related to ethics issues.
SECURITY: Deliverables related to security issues
OTHER: Software, technical diagram, algorithms, models, etc.

https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32015D0444

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 4 of 46 © 2023-2025 HORSE

Executive summary

This deliverable presents the final version of the software modules developed within Work
Package 3 (HORSE Intelligence) of the HORSE research project. It marks the completion of
the five key tasks composing WP3 and reflects the culmination of technical efforts carried out
over the past 30 months of the project’s 36-month duration. This final release succeeds and
builds upon the intermediate version delivered over a year ago, which focused on providing
stable prototypes of the Platform Intelligence (PIL) components for initial integration (IT-1) into
the HORSE architecture.

The modules addressed in this report are:

Sandboxing (SAN) – hosting the Digital Twins for scenario testing and predictive analysis,

Early Modelling (EM) – responsible for generating preliminary assessments through policies
and rules,

Distributed and Trustable AI Engine (DTE) – ensuring secure and privacy-compliant AI data
handling, threat identification and mitigation,

Policies and Data Governance (PAG) – managing and enforcing data policies across the
platform, and

Threat Detector and Mitigation Engine (DEME) – focusing on detecting and mitigating
security threats based on network behaviours and data analysis.

This final version documents the complete development, refinement, debugging, and internal
validation of the above modules, collectively constituting the Platform Intelligence components
at Integration Target 2 (IT-2). These components are now ready for full integration into the
HORSE platform through Work Package 5 (Platform Integration, Use Case Deployment,
Validation, and Final Release), which dominates the project’s final six months.

Importantly, the debugging and improvements in this version were informed by preliminary
integration and validation activities already initiated under WP5. An internal technical report
produced at Month 24 supported these early efforts (Task 5.2), and this final deliverable aligns
with the planned conclusion of WP3 at Month 30.

With this comprehensive and stabilized release, the Platform Intelligence layer is fully prepared
for its role in the final integrated platform. It ensures interoperability with the components from
WP4 and sets a solid foundation for the final deployment and validation stages ahead.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 5 of 46 © 2023-2025 HORSE

Table of contents

DOCUMENT REVISION HISTORY .. 2

Disclaimer .. 3

Copyright notice ... 3

Executive summary .. 4

Table of contents .. 5

List of figures .. 6

Abbreviations .. 7

1 Introduction ... 10

2 Development of the Sandboxing .. 11

3 Development of the Early Modeling framework .. 18

4 Development of the Distributed Trustable AI Engine ... 25

5 Development of the Policies and Data Governance ... 30

6 Development of the Threat Detector and Mitigation Engine 33

7 Conclusions ... 42

References... 43

Annex A - ARIMA Performance Analysis for Telecommunications Network Parameter
Prediction in Cybersecurity Anomaly Detection .. 45

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 6 of 46 © 2023-2025 HORSE

List of figures

Figure 1: Network topology for iteration 2. .. 11

Figure 2: Architecture of the Impact Analysis Digital Twin. ... 12

Figure 3: The structure of the Prediction and Prevention Digital Twin (from HORSE D2.2). 13

Figure 4: A block diagram on the deployment of 5G in Comnetsemu .. 15

Figure 5: The SWAGGER REST API of the Prediction and Prevention Network Digital Twin. 17

Figure 6: Early Modelling components. .. 18

Figure 7: Threat model ... 20

Figure 8: CyberAttackType XML element ... 21

Figure 9: NetworkFeaturesType XML element ... 21

Figure 10: DDoS DNS amplification attack ... 22

Figure 11: DDoS NTP attack .. 23

Figure 12: The DTE component within the HORSE architecture .. 25

Figure 13: The internal components of the DTE. .. 26

Figure 14: The FLOWER concept in DTE. ... 27

Figure 15: Sequence Diagram .. 32

Figure 16: DEME sub-module in the overall architecture [9]. ... 34

Figure 17: Docker Image building script ... 36

Figure 18: Server start command ... 36

Figure 19: Correct running state vérification ... 37

Figure 20: Expected response .. 37

Figure 21: API based attack ... 39

Figure 22: TimesFM vs ARIMA .. 40

Figure 23: HORSE Threat Detector Innovative Block Diagram .. 41

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 7 of 46 © 2023-2025 HORSE

Abbreviations

5G (Mobile) Fifth Generation

5GTN 5G Test Network

AI Artificial Intelligence

AMF Access and Mobility Management Function

API Application Programming Interface

CPU Central Processing Unit

DDoS Distributed Denial-of-Service

DEME Detector and Mitigation Engine

DN Data Network

DNS Domain Name System

DT Digital Twin

DTE Distributed and Trustable AI Engine

EM Early Modelling

FL Federated Learning

ENISA European Network and Information Security Agency

gNB Next Generation Node B

HTTP Hypertext Transfer Protocol

I/O Input/Output

IBI Intent-Based Interface

IMEI International Mobile Equipment Identity

IP Internet Protocol

JSON JavaScript Object Notation

KNE Kubernetes Network Emulator

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 8 of 46 © 2023-2025 HORSE

MEC Multi-access edge computing

ML Machine Learning

MSPL Microsoft SIP Processing Language

NDT Network Digital Twin

NEF Network Exposure Function

NIDD Network Intrusion Detection Dataset

NSA Non-Standalone

NTP Network Time Protocol

NWDAF NetWork Data Analytic Function

P&P Point-to-Point

PAG Policies and Data Governance

PCAP Packet Capture

PIL Platform Intelligence

QoS Quality of Service

RAN Radio Access Network

REST Representational State Transfer

SA Standalone

SDN Software-Defined Networking

SM Smart Monitoring

SMF Session Management Function

STO Secure and Trustable Orchestration

SVM Support Vector Machine

TCP Transmission Control Protocol

TTP Tactics, Techniques, and Procedures

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 9 of 46 © 2023-2025 HORSE

UDP User Datagram Protocol

UERANSIM UE and RAN simulator

UPF User Plane Function

VM Virtual Machine

XML eXtensible Markup Language

YAML Yet another markup language

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 10 of 46 © 2023-2025 HORSE

1 Introduction

This deliverable presents the final outcomes of WP3 – Platform Intelligence within the HORSE
project. As the second and concluding version of this document, it builds upon the initial results
delivered during the first iteration (IT-1), and now reflects the completed implementation,
refinement, and validation of all components associated with WP3.

Since this is categorized as an “OTHER” type deliverable, its focus remains primarily on the
software development aspects of the involved modules, as well as their readiness for
integration within the broader HORSE platform.

The document is organized into five main sections, each corresponding to a specific task within
WP3:

• Section 2: Sandboxing, corresponding to Task 3.1

• Section 3: Early Modelling Framework, corresponding to Task 3.2

• Section 4: Distributed and Trustable AI Engine, corresponding to Task 3.3

• Section 5: Policies and Data Governance, corresponding to Task 3.4

• Section 6: Threat Detector and Mitigation Engine, corresponding to Task 3.5

Section 2 covers the final development of the Sandboxing (SAN) module, which includes two
Digital Twin subcomponents: the Prediction and Prevention DT and the Impact Analysis DT.
Together, they enable simulation and evaluation of various configurations and scenarios,
offering a dynamic environment for testing platform behaviour before deployment.

Section 3 focuses on the Early Modelling (EM) component, which provides foundational input
to the sandbox through two key elements: the Taxonomy, responsible for profiling and
classifying system components, and the Attributes block, which defines the strategic criteria
used to characterize modules based on specific parameters.

Section 4 describes the Distributed and Trustable AI Engine (DTE), which collects and
processes data from multiple sources using machine learning and AI techniques to derive
security policies while ensuring data privacy. It also supports data pre-processing for model
training and integrates with other intelligence components in the platform.

Section 5 details the Policies and Data Governance (PAG) module, which functions as a
central authority for data management across the platform. It ensures compliance with privacy,
quality, and access requirements, while aligning with regulatory and ethical standards.

Finally, Section 6 presents the development of the Threat Detector and Mitigation Engine
(DEME), designed to operate in complex and distributed environments. This module employs
specialized algorithms to analyze network parameters, protocol headers, and real-time traffic
from various network elements and virtualized functions (VNFs), with the goal of detecting and
mitigating potential threats.

This final deliverable reflects the maturity of all WP3 modules, which are now stable and ready
to be integrated into the full HORSE platform as part of the ongoing activities in WP5.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 11 of 46 © 2023-2025 HORSE

2 Development of the Sandboxing

2.1 Impact Analysis Digital Twin

The Impact Analysis Digital Twin has been deployed in Kubernetes [1] using mainly
Kubernetes Network Emulator (KNE) [2]. The topology has been updated in the iteration 2 and
the new one is shown in the following Figure 1:

Figure 1: Network topology for iteration 2.

In this new network topology, we have included two gNBs, four routers, two UPFs, a MEC
server, a DNS server and an Application Server jointly with the DNS clients on the 5G Core,
deployed with Open5GS [3][3], [4].

The Impact Analysis Network Digital Twin has been improved by adding some automation
mechanisms (using Ansible scripts) to make the deployment easier and faster.

The general architecture of the Impact Analysis Digital Twin is:

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 12 of 46 © 2023-2025 HORSE

Figure 2: Architecture of the Impact Analysis Digital Twin.

In Figure 2 we can see that the IA-NDT is made up of different modules:

Network Digital Twin

Is the module that has the pods itself representing the different blocks of the topology
previously described. The deployment of the Kubernetes cluster has been made using different
dependencies such as Golang, Docker, kubectl, Kind and KNE in a Linux server.

Here, also is deployed a Prometheus [35] instance to get the different metrics from the NDT.

Orchestrator

UMU's security orchestrator1 enables mitigation policies to be applied to an infrastructure,
whether physical or virtual. Underneath, it is composed of plugins for translation and device-
specific drivers that execute the action.

The policy format is MSPL, a cybersecurity policy-oriented XML. These policies have different
purposes, such as applying Filtering, QoS, both on routers and hosts, modifying service
configurations such as DNS or NTP, etc.

Policy Translator

The Policy Translator is a translation module that acts as an intermediate point between the
IBI (for applying mitigations) or EM (for simulating attacks) and the orchestrator. Its function is
to translate the outputs of these HORSE components into a valid format for the orchestrator,
MSPL. It also allows setting timers and managing the creation/deletion of policies.

2.1.1 Interfaces

Regarding the modules that communicates with the Impact Analysis Digital Twin, it has
different interfaces, all of them managed via REST API:

- Intent-Based Interface (IBI): manages the what-if scenarios by sending the metrics
that the NDT must monitor and send back the specific measures.

1 For more details about the UMU testbed please refer to D5.2

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 13 of 46 © 2023-2025 HORSE

- Early Modelling (EM): informs the NDT about the specifications of the attack and

scenario to deploy it.

- Smart Monitoring (SM): sends the information about the topology that will be used for
the different scenarios.

2.2 Prediction and Prevention Digital Twin

The Prediction and Prevention Digital Twin is built on the Comnetsemu network emulation
software [10], [11]. Comnetsemu is based on the well-known mininet network emulator [12],
with the integration of a docker-in-docker environment to enable the deployment of services
as docker containers. In this way, it is possible to emulate a 5G SA or NSA architecture by
exploiting the available open-source implementations of the 5G core and access networks.

All employed software, including Comnetsemu, is publicly available and open source.

Mininet is a well-recognized Software Defined Networking network emulator. It is characterized
by a stable and realistic performance, as demonstrated in [13], as well as some limitations in
extremely large emulation scenarios [14]. Comnetsemu builds up on top of such realistic
network emulation to enable to deploy actual service containers, thus generating a realistic
workload and enabling to build realistic scenarios for current and next-generation networks.

Prediction and Prevention Digital Twin includes the following modules:

• Digital Twin Modelling module: it is responsible for generating the DT based on the input
data (traffic and topology information, orchestrated services, etc.)

• Digital Twin Engine module: it will run the DT in the Comnetsemu emulation environment.

• Digital Twin-based Prediction module: it will analyze the output of the DT Engine block using
AI/ML algorithms to perform predictions and identify anomalies.

• I/O Interface module: interface with DTE / IBI for receiving requests and providing the
related outcomes.

Figure 3: The structure of the Prediction and Prevention Digital Twin (from HORSE D2.2).

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 14 of 46 © 2023-2025 HORSE

The Prediction and Prevention Digital Twin is available to the HORSE platform as a Virtual
Machine. Deployment of the VM is performed through Vagrant.

All modules are developed in Python. The following sections describe how the internal modules
are developed.

Digital Twin Modelling module

This module generates the script for replicating the Physical Twin of the 6G network into the
Digital Twin.

This module receives in input via REST APIs a YAML descriptor of the network topology and
the known services running in the network. The format for data collection is common for the
entire HORSE sandbox, and it is the same as for the Impact Analysis Digital Twin. An example
of the format of the file is as described in Section 2.1.2. Based on such information, it generates
a script file to build the network and services in the Comnetsemu environment and to run the
Digital Twin in the sandbox.

The following represents an example of a script for deploying a simple topology in mininet or
Comnetsemu:

from mininet.topo import Topo

class MyFirstTopo(Topo):

 "Simple topology example."

 def __init__(self):

 "Create custom topo."

 # Initialize topology

 Topo.__init__(self)

 # Add hosts and switches

 h1 = self.addHost('h1')

 h2 = self.addHost('h2')

 h3 = self.addHost('h3')

 h4 = self.addHost('h4')

 leftSwitch = self.addSwitch('s1')

 rightSwitch = self.addSwitch('s2')

 # Add links

 self.addLink(h1, leftSwitch)

 self.addLink(h2, leftSwitch)

 self.addLink(leftSwitch, rightSwitch)

 self.addLink(rightSwitch, h3)

 self.addLink(rightSwitch, h4)

topos = { 'myfirsttopo': (lambda: MyFirstTopo()) }

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 15 of 46 © 2023-2025 HORSE

The module receives as input via REST APIs also a YAML/XML descriptor of the attack or
scenario to evaluate. This will be translated into a set of commands to deploy additional
components in the Digital Twin and run/replicate network traffic.

Digital Twin Engine module

This module implements the Digital Twin. The Digital Twin is built in the Comnetsemu
environment, enabling a precise emulation of an SDN network and faithful replication of
services by deploying them in docker containers.

As an example, the following Figure 4 represents how a simple 5G network with Mobile Edge
technology can be replicated in form of a Digital Twin in Comnetsemu.

Figure 4: A block diagram on the deployment of 5G in Comnetsemu

Digital Twin-based Prediction module

This module is aimed at predicting relevant scenarios in order to signal potential treats or other
performance degradations to the HORSE architecture. In the first implementation, it will be
able to detect traffic peaks and potential congestion as well as some types of security attacks.

I/O Interface module

The Digital Twin offers a REST API for interaction with the other modules of the HORSE
architecture, as well as for most of the interactions among its internal modules. A Swagger
interface is provided to enable fast and efficient testing of the proper operation of all offered
functionalities.

Interfaces with other HORSE modules

The Prediction and Prevention Network Digital Twin interacts runtime with two modules of the
HORSE architecture: the Early Modeling module and the Distributed Trustable AI Engine
module. In both cases the interaction is performed through REST API interfaces and JSON
files.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 16 of 46 © 2023-2025 HORSE

The Early Modeling module provides in input to the NDT information about potential attacks,
and it can focus the analysis of the NDT towards specific nodes, by providing IP addresses
and ports.

The NDT provides in output to the Distributed Trustable AI Engine any notification about
potential anomalies and attacks, in order to trigger a most precise identification of the attack
parameters through AI/ML and to select the most appropriate mitigation actions.

The exposed ports are configurable through a proper “config.ini” file in the software distribution.

Digital Twin Management Interface

The Prediction and Prevention Network Digital Twin offers an internal management interface
in order to enable other modules as well as the network manager to interact with the NDT and
to trigger actions or perform measurements.

The management interface provides a set of REST APIs, and it is accessible through two
TCP/IP ports:

• Port 8501 (default): it enables to control the parameters of the network emulator
embedded in the NDT (comnetsemu) and to issue simple commands to collect the
status of nodes and containers, and to run commands in the nodes or switches of the
topology. This REST interface is developed using Python FastAPI framework, and it is
based on SWAGGER. This allows to provide full documentation directly online.
As an example:

o http://192.168.130.9:8501/ provides access to the main internal dashboard
(built on Streamlit Python software)

o http://192.168.130.9:8000/ checks the status of the NDT (if everything is
correct, then the answer is a simple JSON file: {"Digital Twin":"Ready"})

o http://192.168.130.9:8000/docs provides access to the SWAGGER FastAPI
interface and helps quick interaction with the NDT (see figure below)

o http://192.168.130.9:8008/ provides access to the sFlow network monitoring
software (for topology and bandwidth analysis)

http://192.168.130.9:8501/
http://192.168.130.9:8000/
http://192.168.130.9:8000/docs
http://192.168.130.9:8501/

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 17 of 46 © 2023-2025 HORSE

Figure 5: The SWAGGER REST API of the Prediction and Prevention Network Digital Twin.

• Port 3000 (default): this port is connected to an internal Grafana data rendering
instance, which is connected to several container metrics and other performance
parameters. Through Grafana it is possible to perform analysis of the data e.g. related
to CPU utilization and load for each container in the NDT, or measure throughput on
different virtual interfaces.
The interface is available connecting to the IP address of the P&P NDT on port 3000.

The exposed ports are configurable through a proper “config.ini” file in the software distribution.

Additional details on the execution and configuration of the Prediction and Prevention Network
Digital Twin are available in the corresponding section of the github repository of the HORSE
project.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 18 of 46 © 2023-2025 HORSE

3 Development of the Early Modeling framework

The Early Modelling module is developed to supply the Sandboxing module with all the
essential data it needs to operate effectively. This module is structured around two core
elements: Taxonomy and Attributes. The Taxonomy component focuses on identifying and
categorizing potential threats and attack scenarios relevant to the 6G environment. Meanwhile,
the Attributes component outlines the methodology and criteria used to assess how these
attacks could affect 6G components, as well as to evaluate the effectiveness and
consequences of various mitigation and prevention strategies. The overall architecture of the
Early Modelling module is illustrated in Figure 6.

Figure 6: Early Modelling components.

 During the initial phase of the project, the Early Modelling module focused on developing a
threat model to characterize the different types of 6G cyberattacks. This model was structured
around several key components:

• Vulnerability: Refers to weaknesses or flaws in a system that can be exploited by
adversaries. The meta-model leverages the concept of an attack surface to describe
these vulnerabilities in detail. This includes aspects such as user equipment, network
infrastructure, and exposed services that could be targeted.

• Organizational Assets: Encompasses the critical assets and devices within an
organization that are of interest to threat actors. These represent the potential targets
an adversary seeks to exploit.

• Threat Actor: Defined as a malicious entity with the intent and motivation to
compromise a system. The meta-model classifies threat actors based on their origin
(internal or external to the system) and assesses their skill level using a Likert scale.

• Tactics, Techniques, and Procedures (TTPs): Represents the methods and
strategies employed by attackers to achieve their objectives. This includes the overall
approach (tactics), specific means of execution (techniques), and concrete steps
(procedures) used during an attack.

• Threat: A threat is a potential harmful event that arises due to the presence of a
vulnerability. It may arise from weaknesses identified in the ENISA threat landscape,
specific use case activities, adversarial behaviour, or observable patterns.

• Cyberattack: Describes the actual malicious action carried out by a threat actor who
exploits system vulnerabilities to cause harm or disruption.

• Control Actions: Refers to the set of countermeasures designed to address an attack.
These include mitigations, preventive and corrective measures aimed at reducing the
risk or impact of an attack.

Deliverable D3.1 [15] provided a detailed description of each element, as well as its type and
scope in the HORSE architecture.

In the second period of the project (IT-2), the complete set of attacks considered in HORSE
has been modelled. These includes the DNS amplification, NTP DDoS, and DDoS Downlink

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 19 of 46 © 2023-2025 HORSE

attacks. Each of these attacks was characterized using the threat model’s core elements:
threat actor, cyberattack, organization assets, tactics-techniques-procedures (TTP), impact,
and information on mitigation and control actions, including the mitigation and preventive
actions to be enforced when an attack is detected or predicted.

Figure 7 presents the updated threat model, which incorporates new design requirements to
better support both the description of the attacks and the corresponding impact analysis.
Specifically, the cyberattack vector element has been extended to support specific details
about the attack, as well as the organizational assets to support network-specific features,
including details about nodes and ports as defined in the network topology.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 20 of 46 © 2023-2025 HORSE

Figure 7: Threat model

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 21 of 46 © 2023-2025 HORSE

3.1 Threat model XML schema

An XML schema has been specified for the meta-model to allow its complete representation.

This schema is based on the initial one elaborated during the first phase of the project and it

has been updated to support the extensions for the cyberattack vector and organizational

asset, as depicted in Figure 8 and Figure 9.

Figure 8: CyberAttackType XML element

Figure 9: NetworkFeaturesType XML element

3.2 Attacks modelling in the HORSE framework

This section presents the modelling done for the attacks including the DNS amplification and
NTP DDoS attacks.

3.2.1 DDoS DNS amplification

This section presents the modelling of the DNS amplification attack to demonstrate how the
threat model captures this attack scenario. In the proposed XML schema, the

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 22 of 46 © 2023-2025 HORSE

<ThreatModel> element encapsulates all relevant components depicted in Figure 7, while

also integrating additional information necessary for Prediction and Prevention DT to monitor
key parameters during the prediction of the attack. These parameters are specified under the
<vector> element, as illustrated in Figure 8. The <CyberAttack> element serves as a bridge

to map the attack scenario to known adversarial tactics, techniques, and procedures (TTPs)
by referencing established threat intelligence frameworks. Specifically, to align with the MITRE
ATT&CK framework, we associate the attack with its corresponding technique by including the
relevant ID and type attributes. For the DNS amplification scenario, this is represented as

ID="T1498.002" and type="Network Denial of Service: Reflection Amplification".

Figure 10: DDoS DNS amplification attack

3.2.2 DDoS NTP

The proposed threat model also has been used to model the DDoS NTP attack, as illustrated
in Figure 11. In this scenario, the attacker exploits a Network Time Protocol (NTP) server,
typically by leveraging the monlist command to amplify traffic. The DDoS NTP XML file
suggests to the Prediction and Prevention DT to monitor the volume of packets associated
with the NTP monlist, as illustrated in Figure 11. To prevent the system against such an attack,
it is necessary to enforce mitigation strategies and implement conditions to filter UDP-based
traffic.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 23 of 46 © 2023-2025 HORSE

Figure 11: DDoS NTP attack

3.3 I/O interface for the Early Modeling module

The early modelling framework offers a FastAPI endpoint for the other modules of the HORSE
architecture. The JSON input and XML output have been defined for the API endpoints. The
exposed ports will be configurable through a proper “config.json” file in the software
distribution. Moreover, the early modelling is configured to connect with the default network
generated by the Knowledge base and communicate with the API to fetch the mitigation
actions. The url and port can be specified in the config.json file. The Docker compose file
configuration might need to be modified as per the configuration of the Knowledge base.

Input API endpoint can be triggered using the Curl command as presented below.

curl --location 'http://127.0.0.1:8000/xml-scheme/'
--header 'Content-Type: application/json'
--data '{ "CyberAttack": { "Type": "DDoS Downlink", "Vector": {

"attack_timestamp": "2024-04-28T19:21:44.613Z", "attack_location": "DNS

server", "Asset_IPAddress": "192.255.255.200", "Parameters": {

"Description":"11 of DNS packet received per second", "Protocol":"12",

"Flag":"123", "Duration":"321" } } }, "OrganizationAssets": {

"Network_feature": { "Node": { "Node_Id": "1", "Node_name": "Server",

"Node_Type": "primary", "Node_Area": "", "Node_IPAddress": "192.168.0.200"

}, "Ports": { "Port_Id": "1", "Port_Number": "53", "Port_Type": "UDP",

"Port_Status": "Open" } } },
 "ThreatActor": { "Source":"", "ThreatActor_IPAddress": "",

"ThreatActor_Group": "", "ThreatActor_Technique": "",

"ThreatActor_Intension": "" }, "TTP": { "Tactics": "", "Techniques": "",

"Procedure": "" }, "Vulnerability": { "Source": "", "Destination": "",

"Timestamp": ""

}}'

The XML file will be sent to the specified endpoint whenever it is generated. The endpoint
information needs to be added in the config.json file.

http://127.0.0.1:8000/xml-scheme/

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 24 of 46 © 2023-2025 HORSE

curl --location --request POST 'http://192.168.130.51:8000/fetch-xml-

schema'
--header 'Content-Type: application/json'
--data ''

http://192.168.130.51:8000/fetch-xml-schema
http://192.168.130.51:8000/fetch-xml-schema

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 25 of 46 © 2023-2025 HORSE

4 Development of the Distributed Trustable AI Engine

4.1 Introduction

The Distributed Trustable AI Engine (DTE) is a main component of the HORSE architecture
that sends the appropriate intents to the IBI after an attack is identified. DTE receives inputs
from the DEME at periodic time intervals, with a predefined confidence level as well the
identified type of the attack and the involved nodes of the HORSE platform. This information
is internally processed in the DTE via AI/ML approaches in order to identify the appropriate
intents per case. The advices from the DEME are sent using REST HTTP requests to the DTE.
In the same context, DTE can also receive data in the form of policies from PAG, via REST
APIs.

DTE performs data management prior to the actual training, by employing the appropriate
policies for anomaly detection (tampered data), as well as data anonymisation. In addition,
DTE guarantees compliance of the proposed solutions with the policies module. In the next
step, mitigation measures and methodologies from well-established knowledge bases, such
as the MITRE ATT&CK are exploited from both the DEME and DTE in order to build the
appropriate mitigation intents.

Figure 12: The DTE component within the HORSE architecture

4.2 Internal components of the DTE

The internal components of the DTE are shown in Figure 13. These include the NWDAF

aggregator, the Data Processing Module, the ML Model Training Module, the ML Model

Evaluator, the ML Model Repository as well as the Intent Creator. The NWDAF aggregator

receives all data from distinct NWDAF instances that are deployed within the HORSE network.

In Data Processing Module, since the collected data might be heterogeneous, they are

properly processed in order to be used for the actual ML model training. In this module, the

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 26 of 46 © 2023-2025 HORSE

training of various ML approaches can be supported. As it will be also explained in the next

section, performance metrics include F1-score, accuracy, etc which are evaluated via the ML

Model Evaluator. The best performing models are stored in the ML model repository. At the

final stage, the intent to be send in the IBI is created via the Intent Creator module.

Figure 13 : The internal components of the DTE.

4.3 Datasets and performance evaluation of the DTE

The ML training is the main module of the DTE where various models are trained for different
types of attacks. These will include supervised, unsupervised, and deep reinforcement learning
approaches [16]. For this purpose, various datasets were exploited, representing diverse
attacks and network topologies. These datasets are provided i) from HORSE partners, ii) from
the NKUA Open5GS and UERANSIM-based testbed, being able to replicate 5G core network
attacks, as well as attacks on the 5G RAN, and iii) open datasets that have been used from
relevant works on 5G attack scenarios.

At this final stage, four different datasets from the literature have been analysed together with
ML model training and evaluation:

• The first one is a synthetic 5G cellular network data for NWDAF [17], that is based on
Open5GS and UERANSIM. In this context, a topology with a fixed number of subscribers
and cells with different traffic patterns and anomalies has been considered, where the
anomaly is defined as an unexpectedly high network traffic compared to the average
network traffic, fading and stabilizing in time.

• The second dataset is the 5GAD-2022 5G attack detection dataset [18], that is based on
Free5GC and UERANSIM. In this case, two types of intercepted network packets are
included: "normal" network traffic packets and "attack" packets from attacks against a 5G
Core implemented with free5GC. The captures were collected using Tshark or Wireshark
on 4 network interfaces (N2, N3, N4, N6) (AMF, gNB, UPF, SMF, DN) within the 5G core.
10 attacks were implemented, mainly relying on REST API calls to different parts of the
core.

• The third dataset [19] was generated on an Open5GS and UERANSIM-based testbed.
Here, an SMF instance networked in parallel to the original network function acts as the
attacker’s entry point to the virtualised infrastructure and targets the N4 interface between

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 27 of 46 © 2023-2025 HORSE

the SMF and the UPF. The hijacked SMF executes the cyberattacks against the UPF. In
order to obtain this data set, the network traffic data of each entity/device was captured
through Tshark for each network function and radio element.

• The fourth data set, titled 5G Network Intrusion Detection Dataset (NIDD) [20] contains data
in both packet-based format as well as in flow-based formats. 5G-NIDD is generated using
the 5G Test Network (5GTN) in Oulu, Finland, thus providing a close resemblance to a real
network scenario. 5G-NIDD presents a combination of attack traffic and benign traffic under
different attack scenarios, falling into the Distributed Denial of Service (DDoS) and Port
Scan/Reconnaissance categories.

For these datasets, various ML models have been evaluated by the ML model evaluator
module for predefined ML metrics, such as accuracy and F1-score. It should be noted that
apart from evaluating the anomaly detection performance of different ML models, e.g. support
vector machine (SVM) with binary kernel for the N4 interface attacks, these attacks have
already been replicated at the NKUA testbed and data are collected, as well as logs from
various NFs, i.e. AMF, SMF and UPF. After the initial ML model evaluation phase is over, two
distinct actions can take place: i) retraining of the ML model in case its performance is below
the desired level, or ii) storage of the model in the ML repository, for retrieval in future potential
attacks.

Figure 14: The FLOWER concept in DTE.

4.4 Final extensions with respect to IT-1

In the final release of the DTE, federated learning (FL) was also applied, where each NWDAF
instance is responsible for data collection and aggregation in a distinct set of mobile nodes, as
shown in Figure 14 In this case, there are multiple DTE instances per subgroup of nodes,
where each one trains locally the corresponding models with the available datasets.
Afterwards, the master DTE model with the NWDAF aggregator is responsible for updating the
global parameters and informing the individual nodes for their updated values. For this

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 28 of 46 © 2023-2025 HORSE

purpose, the FLOWER concept was applied, that can train multiple nodes in an FL fashion
[21]. In the Table below, all major differences among IT-1 and IT-2 are summarized.

Feature Original: HORSE + BentoML Updated: HORSE + BentoML + FLower

(Federated)

Architecture Type Centralized Federated Learning (1 server, 2 clients)

Data Locality Central — data aggregated at one node Decentralized — data stays on each simulator

Model Training Trained offline, served via BentoML Federated training with model updates per

client

Model Serving BentoML API server (REST or gRPC) BentoML inside each Flower client for

inference

Model Update Flow Manual retraining / offline CI/CD Auto via FLower round-based aggregation

Privacy Low — raw data required at central

point

High — raw data stays local

Network Dependency Low (no sync required between

machines)

High (needs synchronization with Flower

server)

Real-Time Detection Possible with BentoML service endpoint Possible per client; global insight delayed

Deployment Dockerized BentoML service Dockerized Flower client + BentoML per node

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 29 of 46 © 2023-2025 HORSE

Aspect Before (Centralized: HORSE

+ BentoML)

Now (Federated: HORSE + BentoML +

FLoWeR)

1. Data

Handling

- All data collected centrally

- Preprocessed in one place

- HORSE logic applied

globally

- Data remains local per simulation - Each node

runs HORSE independently - Only model

weights are shared (privacy-preserving)

2. Model

Serving

- bentoml.Model exposed

via REST/gRPC - Centralized

API for external inference

- Each Flower client runs BentoML locally -

Inference is local-only unless explicitly exposed

3. Model

Training

- Manual or CI/CD-triggered

training - Static or offline

updates - HORSE rules

embedded into periodic

model refresh

- Training distributed via federated rounds -

Each client trains on local recent data - Server

aggregates updates and redistributes

4.

Security/R

esilience

- Central model is a single

point of failure - Model

poisoning or threshold flaws

affect the whole system

- Semi-autonomous clients - Failures or

poisoned updates are localized - More resilient

to region-specific anomalies or attack vectors

5.

Deployme

nt

- Single Docker container

per deployment - Simple

stack (HORSE + model +

BentoML) - Easy with

Docker Compose or K8s

- Multiple coordinated containers: 1 Flower

Server + N Flower Clients - Each client runs its

own BentoML & model stack - Requires Docker

networking across instances

6.

Monitoring

/Eval

- Centralized logging and

metrics collection - Easy

benchmarking, debugging,

versioning

- Decentralized monitoring per Flower client -

Flower server only sees updates, not full

context - Local metrics must be pulled

manually or exposed through logging layers

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 30 of 46 © 2023-2025 HORSE

5 Development of the Policies and Data Governance

5.1 Overview

The Policies and Data Governance (PAG) component is a data processing service built with
NestJS[26]. It is designed to harvest Packet Capture (PCAP) data in JSON format from the
Smart Monitoring component. Subsequently, the PAG handles and anonymises sensitive
information, and finally it stores the anonymised PCAP data back into the storage indexes of
the Smart Monitoring component. The service uses Redis[27] and Bull[28] for job queue
management and scheduling, ensuring efficient and scalable processing.

5.2 Key Features

PCAP Data in JSON Format

The input to fetch the service is PCAP data which is converted into JSON format. Each record
contains network-related metadata, such as “from” and “to” IP addresses, payload,
timestamps, and protocol details.

Service Activation via Cron Jobs

A cron job is scheduled to run periodically. The cron job enqueues tasks into a Redis-backed
queue, which are then processed asynchronously.

Ad-hoc Service Activation

The component has implemented a manual trigger for the service, in order to enable ad-hoc
use and testing.

Data Read/Write Operations

Read: The service fetches PCAP data from the storage of the Smart Monitoring component,
which is an Elasticsearch index.

Write: The service writes anonymised PCAP data back to a separate Elasticsearch index of
the Smart Monitoring component.

Custom Anonymisation

Sensitive fields such as IP addresses, payload content and International Mobile Equipment
Identity (IMEI) numbers are anonymised using custom logic. The anonymisation logic is
modular and reusable, ensuring flexibility for different data structures.

5.3 Technologies Used

Framework: The application is built using NestJS, a progressive Node.js framework for building
scalable server-side applications.

Modules: The application is modularised.

• ElasticModule: handles all the interactions with Elasticsearch.

• Provides methods for:
o Harvesting PCAP data using the scroll API.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 31 of 46 © 2023-2025 HORSE

o Writing anonymised PCAP data back to the Elasticsearch index.

• QueueJobsModule: manages job queueing and processing.

• Functions:
o JobSchedulerService: Periodically enqueues jobs using a cron job.
o QueueJobsProcessor: Processes jobs from the queue.

• AnonymisationModule: contains the logic for anonymising sensitive fields in the PCAP
data.

• Modular and reusable for different data structures.

Redis: It acts as a backend for job queue management. Redis is integrated with the Bull library
for managing and processing jobs.

Bull: This is a queueing library for handling job scheduling and processing. Jobs are enqueued
by the cron job and processed by a queue processor.

Environment Variables: the service uses the following environment variables, typically stored
in an .env file.

Redis Configuration

REDIS_HOST=redis

REDIS_PORT=6379

Elasticsearch Configuration

ELASTICSEARCH_URL=http://elasticsearch:9200

ELASTICSEARCH_INDEX=pcap-data-local

ELASTICSEARCH_ANONYMIZATION_INDEX=pcap-data-anonymization

5.4 How It Works

Data Flow

• Input: The service harvests PCAP data in JSON format from the Elasticsearch index of
the Smart Monitoring component.

• Processing:
o The PCAP data is fetched in batches using Elasticsearch scroll API.
o Sensitive fields (e.g., “from” and “to” IP addresses, payload content, IMEI) are

anonymised using custom logic.

• Output: The anonymised data is written to a separate Elastisearch index of the Smart
Monitoring component.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 32 of 46 © 2023-2025 HORSE

Communication

A cron job is scheduled to run periodically (configurable; currently set to run every day at
midnight). The cron job enqueues tasks into jobs using the Bull package. The queue processor
fetches the tasks and processes them asynchronously.

Custom Anonymisation Logic

IP Addresses: masked with X (e.g. X.X.X.X)

Payload: masked with a string [REDACTED_PAYLOAD]

IMEI: masked with a string [ANONYMISED_IMEI]

Sequence Diagram

Figure 15: Sequence Diagram

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 33 of 46 © 2023-2025 HORSE

6 Development of the Threat Detector and Mitigation
Engine

6.1 Threat Detector and Mitigation Engine Features

The functionalities of the Threat Detector and Mitigation Engine (DEME) module are fully
consistent with the specifications outlined in the IT-1 deliverable (D3.1 HORSE Platform
Intelligence developed (IT-1) [15]) and remain aligned with the architectural requirements and
design principles established in the WP2 deliverables, ranging from D2.1 [6] (HORSE
Landscape: Technologies, state of the art, AI policies and requirements (IT-1)) and D2.2 [7]
(HORSE Architectural Design (IT-1) through to the most recent D2.3 [8] (HORSE Landscape:
Technologies, state of the art, AI policies and requirements (IT-2) and D2.4 [9] (HORSE
Landscape and Architectural Design).

In the context of the HORSE architecture, and as illustrated in the overall block diagram
(recalled here for clarity in Figure 16), the system is organized into three key conceptual layers:

• Intent-Based Interface (IBI) – This layer serves as the entry point for high-level directives,
allowing network administrators or intelligent software agents to express desired
outcomes without needing to manage low-level configuration details. Its primary role is to
abstract and simplify network control through intent-driven interactions.

• AI Secure and Trustable Orchestration (STO) – Operating as the intermediary control
logic, this layer is responsible for the dependable orchestration of network resources. It
ensures that the intents expressed via the IBI are correctly interpreted and translated into
executable actions, enforcing the corresponding policies while maintaining system
reliability and trustworthiness.

• Platform Intelligence Layer (PIL) – This layer introduces advanced intelligence and
autonomy into the system. It includes multiple sub-modules capable of analyzing,
predicting, and optimizing network behavior. Among these, the DEME module (situated in
the “Real Context” section) is specifically designed to identify, assess, and respond to
security threats in real time, leveraging network behavior analysis and anomaly detection.

The DEME module plays a critical role in this architecture by enabling the platform not only to
detect threats but also to initiate appropriate mitigation strategies autonomously, thereby
enhancing the overall security and resilience of the HORSE system.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 34 of 46 © 2023-2025 HORSE

Figure 16: DEME sub-module in the overall architecture [9].

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 35 of 46 © 2023-2025 HORSE

6.2 Threat Detector and Mitigation Engine Interfaces

6.2.1 Ingress Interface

The Ingress interfaces have not been modified since the previous iteration (IT-1) D3.1 [15], as
the evolution of the project did not require any changes in this area. As a result, the efforts
were focused on testing and validating the existing interfaces

6.2.2 Egress Interface

The same applies to the egress interfaces, for which no modifications or additions were
necessary; the efforts focused about testing and validation activities

6.2.3 Additional Interfaces (E.g. Digital Twin)

As for potential additional interfaces between the DEME module and other subsystems within
the framework—interfaces that were not defined during the first iteration and were not further
explored during IT-2, which focused on other aspects as detailed in the WP2 deliverables
[6],[7],[8], and [9]—these could be easily integrated in future evolutions of the HORSE
framework beyond the project’s official end. This is made possible by the fact that the DEME
module has been developed using modern, modular, and extensible software design
principles.

6.3 DEME Implementation overview

6.3.1 Background

This section describes how to check prerequisites, install the toolkit and verify it has been
correctly installed. A basic understanding of shell scripting and Docker is assumed.

The following terminology is used throughout:

• Client: the host from which commands are issued to the Server.

• Server: the host where workloads are executed.

All commands are intended to be run from the Client. It is assumed that Client and Server are
separate hosts.

6.3.2 Prerequisites

• Docker must be installed on your local machine.

• Navigate to the root folder of the toolkit in order to proceed with the installation process.

https://ericsson-my.sharepoint.com/personal/orazio_toscano_ericsson_com/Documents/Lavoro/ProgettiFinanziati/6Green/WP3/6Green_Budget+Effort+WP+Deliverables_vSubmitted.xlsx?web=1

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 36 of 46 © 2023-2025 HORSE

6.3.3 Installation

• Build the Docker image for the server by running the following script:

Figure 17: Docker Image building script

• Start the server using the command:

Figure 18: Server start command

Where :

o <version> is the minor version number.

o <number of instances> specifies how many nodes are to be monitored,

o <list of the features to be monitored> refers to the features to be monitored (e.g.,
NEF or NEF,NTP).

• Verify that the server is running correctly by sending a GET request to:

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 37 of 46 © 2023-2025 HORSE

Figure 19: Correct running state vérification

• A successful response should return:

Figure 20: Expected response

6.3.4 Interfaces

1. Management Methods

No changes on respect to deliverable 3.1 [15].

1. Operational Methods

No changes on respect to deliverable 3.1 [15] except for the following API that has been added:

HTTP
Method

Path Action

POST /reset_db
Reset the training to original values removing
the data coming from the runtime elaboration

2. Extraction Methods

No changes on respect to deliverable 3.1 [15].

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 38 of 46 © 2023-2025 HORSE

6.3.5 Usage

No changes on respect to deliverable 3.1 [15].

6.3.6 Debugging tools

No changes on respect to deliverable 3.1 [15].

6.3.7 API-based attacks: unauthorized access to the Network Exposure
Function (NEF)

The DEME threat detection module was designed from the outset to incorporate the most
advanced Machine Learning technologies, aiming to address the ever-evolving landscape of
cyber threats with innovative approaches. Its goal is to detect a broad range of attack vectors,
including the increasingly dangerous and unpredictable zero-day attacks. During the second
phase of the project, DEME was thoroughly tested against several types of threats to assess
its effectiveness. While post-integration testing within the complete platform (covered
extensively in WP5, which includes HORSE integration, use case deployment, platform
validation, and final release) is absolutely crucial, it is also best practice to thoroughly test each
module in isolation during development.

. In Python, this typically involves writing unit tests (e.g., using frameworks like unittest or
pytest) and also conducting more advanced integration-level tests that simulate how the
module interacts with external systems or services. These represent two increasingly
sophisticated levels of validation that allow for comprehensive debugging of the module’s
internal logic and its interfaces. By ensuring robustness early on, integration efforts can then
focus exclusively on higher-level platform-specific concerns, rather than module-level issues
that could have been addressed in isolation.

In line with this approach, DEME has followed all recommended standalone testing practices
under WP3, which focuses on the module-level validation phase, prior to integration. One
particularly concerning scenario examined—especially relevant for future 6G networks—is the
so-called “unauthorized access to the Network Exposure Function (NEF),” as described by the
MITRE framework [25]. In such cases, an attacker controlling an external Application Function
(AF) may exploit a fraudulent OAuth access token to illegitimately invoke NEF services. NEF
is a critical component in mobile networks, exposing sensitive functionalities—such as device
analytics, user traffic routing, location tracking, and mobility events—to authorized third-party
applications using secure protocols like TLS and OAuth 2.0. However, a malicious AF can
bypass these safeguards by presenting a stolen or manipulated token, gaining access to
sensitive data and potentially enabling further attacks, such as man-in-the-middle (MITM) or
eavesdropping. These types of intrusions are particularly dangerous because they are often
discovered only after a long time, causing significant damage in terms of data breaches and
privacy violations. As highlighted in specialized literature [24], API-based attacks now
represent one of the most serious security threats to modern businesses, as APIs offer direct
access to key data and services. Attackers are increasingly aware of the widespread use and
known vulnerabilities of these interfaces. While code injection attacks are still common—
typically requiring some prior knowledge—brute force attacks remain among the most widely
used due to their simplicity and effectiveness. In a brute force attack, an attacker bombards an
API or application with repeated requests, attempting to guess authentication credentials,
secrets, or access tokens through trial and error. In light of these growing threats, DEME has
already addressed and evaluated these new forms of attacks during Iteration 2, ensuring it is

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 39 of 46 © 2023-2025 HORSE

robust and ready for integration. The following image illustrates an example snapshot of the
specific tests performed.

Figure 21: API based attack

6.3.8 Exploratory activity

One of the key strengths of DEME’s internal architecture lies in its innovative use of a pipelined
tree structure. This design allows for the flexible integration and combination of various
machine learning (ML) techniques in the search for the most effective forecasting solution.

During the first phase of experimentation, a diverse range of algorithms was tested—including
an Ericsson custom one (patent protected [22]), ARIMA, Random Forest, XGBoost, and
Logistic Regression—to identify the most promising approach. Among these, ARIMA
demonstrated the best performance.

In the second iteration, the focus shifted to comparing ARIMA with TimesFM [23], a more
recent and advanced time-series forecasting model developed by Google. TimesFM is a pre-
trained model built on extensive real-world time-series data and is capable of generating
forecasts for previously unseen datasets with adaptable prediction horizons.

This comparison was part of an exploratory analysis aimed at enhancing the performance of
the threat detection component. The evaluation involved head-to-head testing of ARIMA and
TimesFM to determine which model delivers more accurate forecasts in the specific context of
threat identification.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 40 of 46 © 2023-2025 HORSE

As illustrated in the following Figure 22: TimesFM vs ARIMA, test results show that while
TimesFM represents a significant leap forward in general-purpose forecasting capabilities,
within our specific use case of the Threat Detector, ARIMA continues to outperform it in terms
of effectiveness (for more details please refer to following Annex A).

Figure 22: TimesFM vs ARIMA

6.3.9 Innovative aspects summarization

In conclusion, focusing on the innovative dimensions of the project, several groundbreaking
elements stand out.

• First, the framework integrates for the first time state-of-the-art machine learning
technologies within a cybersecurity context alongside equally advanced systems like Digital
Twins. This synergy enhances the overall detection and response capabilities, producing
more effective outcomes than any individual technology could achieve alone.

• Second, in addressing the critical challenge of minimizing detection time—essential to
ensure mitigation actions are still feasible before a network spirals out of control—the
system employs fast anomaly detection and learning-based methods. These allow attacks
to be identified the moment a deviation from expected behavior occurs, without waiting for
predefined thresholds to be crossed.

• Third, in line with this goal, detection sources are strategically selected as close as possible
to the root of the potential threat. For example, in the case of NTP DDoS amplification
attacks, the system monitors upstream NTP MONLIST queries rather than downstream
large response packets, significantly reducing detection latency.

• Fourth, the framework includes both cutting-edge algorithms and custom-developed
HORSE algorithms, the latter protected by patents [22], reflecting a strong commitment to
technological innovation.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 41 of 46 © 2023-2025 HORSE

• Fifth, the internal architecture adopts a pipelined tree structure, please see Figure 23, to
overcome one of the major limitations in traditional cybersecurity ML applications:
siloization. While many commercial solutions claim broad attack coverage, in practice, ML
models tend to specialize in specific threat types, operating in isolated silos. This
architecture addresses that limitation by deploying multiple specialized detectors in parallel,
whose outputs are then aggregated and correlated in downstream stages. The final Egress
stage has a unified view of all preceding outputs, enabling it to detect complex or combined
attacks that would otherwise go unnoticed by isolated detectors.

• Finally, instead of using a binary on/off attack detection model, this system assigns a risk
probability or confidence score to each detection event. This probabilistic approach enables
higher-level reasoning and integration with other intelligent modules, potentially powered by
complementary technologies, allowing for a more adaptive and intelligent cybersecurity
response strategy.

Figure 23: HORSE Threat Detector Innovative Block Diagram

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 42 of 46 © 2023-2025 HORSE

7 Conclusions

This deliverable marks the completion of WP3 (HORSE Platform Intelligence), summarizing
the final implementation, refinement, and validation of all the components developed within the
five WP3 tasks. The modules—previously released in their IT-1 form—have now reached their
final IT-2 stage, incorporating all planned features and improvements, and are ready for full
and final integration within the HORSE platform.

The activities conducted in this final phase have focused on testing, debugging, and ensuring
consistency with the architectural requirements defined in WP2, while also supporting
preliminary integration activities in WP5. As WP3 officially concludes at M30, the outcomes
reported in this deliverable represent the definitive state of the Platform Intelligence layer.

Going forward, the emphasis will be on WP5, which is dedicated to the integration, validation,
and final release of the complete HORSE platform. The components delivered here are fully
aligned and prepared for that next stage, ensuring a smooth transition into final deployment
and platform-wide interoperability.

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 43 of 46 © 2023-2025 HORSE

References

[1] Kubernetes https://kubernetes.io/

[2] Kubernetes Network Emulator https://github.com/openconfig/kne

[3] Open5GS - Open Source implementation for 5G Core and EPC, i.e. the core network of LTE/NR

network (Release-17) - https://open5gs.org/

[4] Open5GS – A C-language Open Source implementation of 5G Core and EPC -

https://github.com/open5gs5

[5] HORSE project consortium, Grant Agreement, August 2022

[6] HORSE project consortium, D2.1 “HORSE Landscape: Technologies, state of the art, AI policies and

requirements (IT-1)”, June 2023

[7] HORSE project consortium, D2.2 “HORSE Architectural Design (IT-1)”, September 2023

[8] HORSE project consortium, D2.3 “HORSE Landscape: Technologies, state of the art, AI policies and

requirements (IT-2)”, November 2024

[9] HORSE project consortium, D2.4 “HORSE Landscape and Architectural Design”, December 2024

[10] Z. Xiang, S. Pandi, J. Cabrera, F. Granelli, P. Seeling and F. H. P. Fitzek, "An Open-Source Testbed

for Virtualized Communication Networks," in IEEE Communications Magazine, vol. 59, no. 2, pp.

77-83, February 2021, doi: 10.1109/MCOM.001.2000578.

[11] Comnetsemu, https://git.comnets.net/public-repo/comnetsemu

[12] “Mininet website”, http://mininet.org

[13] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, Nick McKeown,

“Reproducible Network Experiments Using Container-Based Emulation,” CoNEXT’12, December

10–13, 2012, Nice, France.

[14] D. Muelas, J. Ramos and J. E. L. d. Vergara, "Assessing the Limits of Mininet-Based Environments

for Network Experimentation," in IEEE Network, vol. 32, no. 6, pp. 168-176, November/December

2018, doi: 10.1109/MNET.2018.1700277

[15] HORSE project consortium, D3.1 “HORSE Platform Intelligence developed (IT-1)”, September 2023

[16] A. Giannopoulos, S. Spantideas, N. Kapsalis, P. Karkazis and P. Trakadas, "Deep Reinforcement

Learning for Energy-Efficient Multi-Channel Transmissions in 5G Cognitive HetNets: Centralized,

Decentralized and Transfer Learning Based Solutions," in IEEE Access, vol. 9, pp. 129358-129374,

2021, doi: 10.1109/ACCESS.2021.3113501.

[17] Synthetic Data Set for Network Data Analytics Function (NWDAF),

https://github.com/sevgicansalih/nwdaf_data

[18] 5GAD-2022 5G attack detection dataset, https://github.com/IdahoLabResearch/5GAD

[19] 5GC PFCP Intrusion Detection Dataset, https://ieee-dataport.org/documents/5gc-pfcp-intrusion-

detection-dataset-0

[20] 5G-NIDD: A Comprehensive Network Intrusion Detection Dataset Generated over 5G Wireless

Network, http://ieee-dataport.org/10203

[21] Flower – A Friendly Federated Learning Framework, https://flower.dev/

https://github.com/open5gs5

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 44 of 46 © 2023-2025 HORSE

[22] Gemme Luciano, Cappelli Marco, Ericsson Patent WO2021190760 “Determining an Alarm

Condition” https://www.patentguru.com/search?q=WO2021190760

[23] TimesFM - (Time Series Foundation Model) : A pretrained time-series foundation model

developed by Google Research for time-series forecasting - https://github.com/google-

research/timesfm

[24] Vaadata – “How to strengthen the security of your APIs to counter the most common attacks” -

API security, vulnerabilities and common attacks

[25] Mitre – Fight – “Unauthorized access to Network Exposure Function (NEF) via token fraud” -

https://fight.mitre.org/techniques/FGT5011/

[26] NestJS – A progressive Node.js framework for building efficient, reliable and scalable server-side

applications - https://nestjs.com/

[27] Redis – World’s fastest data platform- https://redis.io/

[28] Bull – Premium Queue package - https://github.com/OptimalBits/bull

[29] R. Bruschi CNIT, Giuseppe Burgarella Ericsson “A Lightweight Prediction Method for Scalable

Analytics and Multi-Seasonal KPIs” - https://link.springer.com/chapter/10.1007/978-3-319-

67639-5_6

[30] Vaia I. Kontopoulou, Athanasios D. Panagopoulos, Ioannis Kakkos, George K. Matsopoulos “ A

Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven

Networks“ - https://ideas.repec.org/a/gam/jftint/v15y2023i8p255-d1206557.html

[31] “ARIMA based algorithms vs neural networks in anomaly detection” -

https://www.eyer.ai/blog/arima-based-algorithms-vs-neural-networks-in-anomaly-detection/

[32] Haitham Fawzy “A Comparative Simulation Study of ARIMA and Computational Intelligent

Techniques for Forecasting Time Series Data”,

https://www.researchgate.net/publication/357522210_A_Comparative_Simulation_Study_of_A

RIMA_and_Computational_Intelligent_Techniques_for_Forecasting_Time_Series_Data

[33] Joao Vitor Matos Goncalves, Michel Alexandre, Michel Alexandre “ARIMA and LSTM: A

Comparative Analysis of Financial Time Series Forecasting” -

https://ideas.repec.org/p/spa/wpaper/2023wpecon13.html

[34] Time Series Forecasting: ARIMA/VARIMA vs Machine Learning/Deep Learning -

https://stats.stackexchange.com/questions/487970/time-series-forecasting-arima-varima-vs-

machine-learning-deep-learning

[35] Prometheus – Open Source metrics and monitoring for your systems and services -

https://prometheus.io/

https://github.com/google-research/timesfm
https://github.com/google-research/timesfm
https://www.vaadata.com/blog/how-to-strengthen-the-security-of-your-apis-to-counter-the-most-common-attacks/
https://fight.mitre.org/techniques/FGT5011/
https://nestjs.com/
https://redis.io/
https://github.com/OptimalBits/b
https://link.springer.com/chapter/10.1007/978-3-319-67639-5_6
https://link.springer.com/chapter/10.1007/978-3-319-67639-5_6
https://ideas.repec.org/a/gam/jftint/v15y2023i8p255-d1206557.html
https://www.eyer.ai/blog/arima-based-algorithms-vs-neural-networks-in-anomaly-detection/
https://www.researchgate.net/publication/357522210_A_Comparative_Simulation_Study_of_ARIMA_and_Computational_Intelligent_Techniques_for_Forecasting_Time_Series_Data
https://www.researchgate.net/publication/357522210_A_Comparative_Simulation_Study_of_ARIMA_and_Computational_Intelligent_Techniques_for_Forecasting_Time_Series_Data
https://stats.stackexchange.com/questions/487970/time-series-forecasting-arima-varima-vs-machine-learning-deep-learning
https://stats.stackexchange.com/questions/487970/time-series-forecasting-arima-varima-vs-machine-learning-deep-learning

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 45 of 46 © 2023-2025 HORSE

Annex A - ARIMA Performance Analysis for
Telecommunications Network Parameter Prediction in
Cybersecurity Anomaly Detection

ARIMA Performance Characteristics

The ARIMA model demonstrated exceptional performance in our telecommunications network
context, exhibiting several key advantages that align with recent academic findings [29]. The
model showed remarkable efficiency in terms of computational resources while maintaining
high predictive accuracy. Notably, ARIMA achieved optimal performance without requiring
extensive historical datasets for training, a significant advantage in operational environments
where rapid deployment is essential.

The model's interpretability proved invaluable for understanding the underlying network
behavior patterns. The clear statistical meaning of ARIMA's parameters (p, d, q) facilitated both
model validation and result interpretation, crucial factors in cybersecurity applications where
understanding the reasoning behind predictions is as important as the predictions themselves.

Comparative Analysis with Alternative Algorithms

To validate ARIMA's effectiveness, comprehensive performance comparisons were conducted
against several established machine learning algorithms, including Random Forest, XGBoost,
and Logistic Regression. Across all evaluation metrics, ARIMA consistently outperformed
these alternatives in our specific telecommunications network parameter prediction tasks.

Furthermore, recognizing the emergence of more advanced forecasting technologies, we
extended our evaluation to include Google's TimesFM, a state-of-the-art foundation model
known for its exceptional performance across diverse forecasting applications. Despite
TimesFM's documented superiority in general forecasting scenarios, ARIMA maintained its
performance advantage in our specific context of telecommunications network parameters.

Theoretical Context and Literature Alignment

Recent academic literature [30][31][32][33] suggests that while modern AI algorithms generally
demonstrate superior performance across most forecasting applications, classical methods
like ARIMA maintain competitive advantages in specific scenarios. Our findings strongly
support this perspective, particularly the observation that ARIMA excels in scenarios involving
univariate time series with clear seasonal patterns and limited computational resources.

The success of ARIMA in our telecommunications context can be attributed to the alignment
between the model's assumptions and our data characteristics. The stationarity requirement,
often viewed as a limitation, actually represented a strength in our case, as
telecommunications network parameters naturally exhibit the stationary behavior (after
appropriate transformations) that ARIMA expects.

Implications and Future Research Directions

The superior performance of ARIMA in our specific telecommunications network anomaly
detection context demonstrates the continued relevance of classical statistical methods in
specialized applications. However, current research trends indicate significant potential in
hybrid modeling approaches that combine ARIMA's strengths with modern machine learning
capabilities.

Recent studies [34] have shown that hybrid models, such as ARIMA-LSTM combinations, can
reduce forecasting errors by 18-35% compared to individual models. This finding suggests that
while ARIMA proved optimal for our current telecommunications network parameters, future
research iterations should explore hybrid approaches that leverage ARIMA's seasonal

HORSE Project - D3.2: HORSE Platform Intelligence developed (IT-2)

 Page 46 of 46 © 2023-2025 HORSE

modeling capabilities alongside the pattern recognition strengths of modern machine learning
algorithms.

Conclusion

This research demonstrates that ARIMA remains a highly effective solution for
telecommunications network parameter prediction in cybersecurity anomaly detection
contexts, particularly when dealing with multi-seasonal time series data. The model's
combination of interpretability, computational efficiency, and robust performance with limited
training data makes it an excellent choice for operational cybersecurity systems.

However, the promising results achieved by ARIMA should be viewed as a foundation rather
than a conclusion. Future research directions will focus on developing hybrid models that
combine ARIMA's proven effectiveness in our specific context with advanced machine learning
techniques, potentially achieving even greater performance improvements while maintaining
the operational advantages that made ARIMA successful in this telecommunications network
security application.

The next experimental phase will therefore concentrate on hybrid solution development,
representing a natural evolution from our current findings toward more sophisticated and
potentially more effective anomaly detection capabilities for telecommunications network
cybersecurity.

